Show simple item record

dc.contributor.author
 hal.structure.identifier
NAJJAR, Walid
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorLEGRAND, Xavier
dc.contributor.author
 hal.structure.identifier
DAL SANTO, Philippe
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorSOULAT, Damien
dc.contributor.author
 hal.structure.identifier
BOUDE, Serge
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2013
dc.date.submitted2015
dc.identifier.issn1013-9826
dc.identifier.urihttp://hdl.handle.net/10985/10260
dc.description.abstractSimulation of the dry reinforcement preforming, first step of the Resin Transfer Moulding process, become necessary to determine the feasibility of the forming process, compute the fiber directions in the final composite component, and optimize process parameters during this step. Contrary to geometrical approaches, based on fishnet algorithms [1, 2], finite element methods can take into account the actual physical parameters, the real boundary conditions and the mechanical behaviour of the textile reinforcement [3, 4]. The fabric can be modelled either as continuum media with specific material behaviour [5, 6], or using discrete structural elements to describe the textile structure at the mesoscopic scale [7, 8]. A semi-discrete approach, which is a compromise between the above continuous and discrete approaches [9, 10], is also used for simulation. A discrete approach for the simulation of the preforming of dry woven reinforcement has been proposed and presented in a previous paper [11]. This model is based on a “unit cell” formulated with elastic isotropic shells coupled to axial connectors. The connectors, which replace bars or beams largely studied in other discrete approaches [12], reinforce the structure in the yarn directions and naturally capture the specific anisotropic behaviour of fabric. Shell elements are used to take into account the in-plane shear stiffness and to manage contact phenomena with the punch and die. The linear characteristic of the connectors [11], has been extended to a non linear behaviour in the present paper to better account for fabric undulation. Using this numerical model, we propose, in this work to study the effect of process parameters on the woven fabric deformation during the performing step. The emphasis will be placed on the analysis of the influence of the blank holder pressure on the shear angle distribution.
dc.description.sponsorshipThis work has been undertaken within the framework of the Défi composite project. The authors would like to thank Oséo for its financial support, the project leader Airbus-France and other partners (EADS IW and LoireTech) for provided facilities.
dc.language.isoen
dc.publisherTrans Tech Publications
dc.rightsPost-print
dc.subjectWoven-fabric reinforcements
dc.subjectforming
dc.subjectfinite element analysis
dc.titleAnalysis of the blank holder force effect on the preforming process using a simple discrete approach
dc.identifier.doi10.4028/www.scientific.net/KEM.554-557.441
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page441-446
ensam.journalKey Engineering Materials
ensam.volume554-557
hal.identifierhal-01207085
hal.version1
hal.statusaccept
dc.identifier.eissn1662-9795


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record