Show simple item record

dc.contributor.authorMEZHER, Rabih
dc.contributor.author
 hal.structure.identifier
LE CORRE, Steven
956 Laboratoire de thermocinétique [Nantes] [LTN]
dc.contributor.author
 hal.structure.identifier
AMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorCHINESTA, Francisco
dc.contributor.author
 hal.structure.identifier
ABISSET-CHAVANNE, Emmanuelle
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2013
dc.date.submitted2015
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/10985/10264
dc.description.abstractWhen suspensions involving rigid rods become too concentrated, standard dilute theories fail to describe their behavior. Rich microstructures involving complex clusters are observed, and no model allows describing its kinematics and rheological effects. In previous works the authors propose a first attempt to describe such clusters from a micromechanical model, but neither its validity nor the rheological effects were addressed. Later, authors applied this model for fitting the rheological measurements in concentrated suspensions of carbon nanotubes (CNTs) by assuming a rheo-thinning behavior at the constitutive law level. However, three major issues were never addressed until now: (i) the validation of the micromechanical model by direct numerical simulation; (ii) the establishment of a general enough multi-scale kinetic theory description, taking into account interaction, diffusion and elastic effects; and (iii) proposing a numerical technique able to solve the kinetic theory description. This paper focuses on these three major issues, proving the validity of the micromechanical model, establishing a multi-scale kinetic theory description and, then, solving it by using an advanced and efficient separated representation of the cluster distribution function. These three aspects, never until now addressed in the past, constitute the main originality and the major contribution of the present paper.
dc.language.isoen
dc.publisherMDPI
dc.rightsPost-print
dc.subjectkinetic theory
dc.subjectconcentrated suspensions
dc.subjectaggregates
dc.subjectFokker-Planck equation
dc.subjectproper generalized decomposition
dc.subjectmicromechanics
dc.titleKinetic Theory Microstructure Modeling in Concentrated Suspensions
dc.identifier.doi10.3390/e15072805
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halInformatique: Ingénierie assistée par ordinateur
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des fluides
ensam.audienceInternationale
ensam.page2805-2832
ensam.journalEntropy
ensam.volume15
ensam.issue7
hal.identifierhal-01207104
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record