Show simple item record

dc.contributor.authorDESPRINGRE, Nicolas
dc.contributor.authorCHEMISKY, Yves
dc.contributor.author
 hal.structure.identifier
ROBERT, Gilles
242739 Solvay Engineering Plastics
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2015
dc.date.submitted2015
dc.identifier.isbn9781119065272
dc.identifier.urihttp://hdl.handle.net/10985/10268
dc.description.abstractThis work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.
dc.language.isoen
dc.publisherIbrahim Karaman, Raymundo Arróyave and Eyad Masad / Wiley
dc.rightsPost-print
dc.subjectPolymer-matrix composites
dc.subjectShort glass fiber
dc.subjectMulti-scale modeling
dc.subjectViscoelastic-Damage behavior
dc.titleMicromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66
dc.identifier.doi10.1002/9781119090427.ch48
dc.typdocCommunication avec acte
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.conference.titleTMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015)
ensam.conference.date2015-01-11
ensam.countryQatar
ensam.title.proceedingProceedings of the MEMA 2015
ensam.page451-459
ensam.cityDoha
hal.identifierhal-01207175
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record