Show simple item record

dc.contributor.authorDESPRINGRE, Nicolas
dc.contributor.authorCHEMISKY, Yves
dc.contributor.author
 hal.structure.identifier
ROBERT, Gilles
242739 Solvay Engineering Plastics
dc.contributor.author
 hal.structure.identifier
FITOUSSI, Joseph
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2015
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10985/10354
dc.description.abstractThe paper presents a new micromechanical high cycle fatigue visco-damage model for short glass fiber reinforced thermoplastic composites, namely: PA66/GF30. This material, extensively used for automotive applications, has a specific microstructure which is induced by the injection process. The multi-scale developed approach is a modified Mori-Tanaka method that includes coated reinforcements and the evolution of micro-scale damage processes. The description of the damage processes is based on the experimental investigations of damage mechanisms previously performed by the authors and presented elsewhere [M.F. Arif et al. "In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity." Composites Part B: Engineering, Volume 61: 55-65, 2014]. Damage chronologies have been proposed involving three different local degradation processes: fiber-matrix interface debonding/coating degradation, matrix microcracking and fiber breakage. Their occurrence strongly depends on the microstructure and the moisture content. The developed model integrates these damage kinetics and accounts for the complex matrix viscoelasticity and the reinforcement orientation distributions induced by the process. Each damage mechanism is introduced through an evolution law involving local stress fields computed at the microscale. The developed constitutive law at the representative volume element scale is implemented into the finite element code Abaqus using a User MATerial subroutine. The model identification is performed via reverse engineering, taking advantage of the multiscale experimental results: in-situ SEM tests as well as quantitative and qualitative μCT investigations. Experimental validation is achieved using high cycle strain controlled fatigue tests.
dc.language.isoen
dc.rightsPost-print
dc.subjectPolymer-matrix composite
dc.subjectShort glass fiber
dc.subjectMulti-scale modeling
dc.subjectViscoelastic-Damage behavior
dc.titleFatigue damage in short glass fiber reinforced PA66: Micromechanical modeling and multiscale identification approach
dc.typdocCommunication avec acte
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.conference.title20th International Conference on Composite Materials
ensam.conference.date2015-07-19
ensam.countryDanemark
ensam.title.proceedingProceedings of the ICCM20
ensam.page10p.
ensam.cityCopenhague
hal.identifierhal-01217553
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record