Show simple item record

dc.contributor.author
 hal.structure.identifier
JAVILI, Ali
73500 Stanford University
dc.contributor.author
 hal.structure.identifier
CHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author
 hal.structure.identifier
MCBRIDE, Andrew T.
303907 University of Cape Town
dc.contributor.authorSTEINMANN, Paul
dc.contributor.author
 hal.structure.identifier
LINDER, Christian
73500 Stanford University
dc.date.accessioned2015
dc.date.available2017
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn0936-7195
dc.identifier.urihttp://hdl.handle.net/10985/10364
dc.description.abstractThe objective of this contribution is to establish a first-order computational homogenization framework for micro-to-macro transitions of porous media that accounts for the size effects through the consideration of surface elasticity at the microscale. Although the classical (first-order) homogenization schemes are well established, they are not capable of capturing the well-known size effects in nano-porous materials. In this contribution we introduce surface elasticity as a remedy to account for size effects within a first-order homogenization scheme. This proposition is based on the fact that surfaces are no longer negligible at small scales. Following a standard first-order homogenization ansatz on the microscopic motion in terms of the macroscopic motion, a Hill-type averaging condition is used to link the two scales. The averaging theorems are revisited and generalized to account for surfaces. In the absence of surface energy this generalized framework reduces to classical homogenization. The influence of the length scale is elucidated via a series of numerical examples performed using the finite element method. The numerical results are compared against the analytical ones at small strains for tetragonal and hexagonal microstructures. Furthermore, numerical results at small strains are compared with those at finite strains for both microstructures. Finally, it is shown that there exists an upper bound for the material response of nano-porous media. This finding surprisingly restricts the notion of “smaller is stronger”.
dc.description.sponsorshipERC Advanced Grant MOCOPOLY, National Research Foundation of South Africa, Samsung Electronics.
dc.language.isoen
dc.rightsPost-print
dc.subjectHomogenization
dc.subjectSurface elasticity
dc.subjectSize effects
dc.subjectNano-materials
dc.titleComputational homogenization of nano-materials accounting for size effects via surface elasticity
ensam.embargo.terms2 Years
dc.identifier.doi10.1002/gamm.201510016
dc.typdocArticle dans une revue sans comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.page285-312
ensam.journalGAMM-Mitteilungen
ensam.volume38
ensam.issue2
hal.identifierhal-01515306
hal.version1
hal.date.transferred2020-04-08T16:05:50Z
hal.submission.permittedTrue
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record