Show simple item record

dc.contributor.authorGOULDING, Neil J.
dc.contributor.authorRIBE, Neil M.
dc.contributor.author
 hal.structure.identifier
CASTELNAU, Olivier
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorWALKER, Andrew M.
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn0956-540X
dc.identifier.urihttp://hdl.handle.net/10985/10415
dc.description.abstractProgressive deformation of upper mantle rocks via dislocation creep causes their constituent crystals to take on a non-random orientation distribution (crystallographic preferred orientation or CPO) whose observable signatures include shear-wave splitting and azimuthal dependence of surface wave speeds. Comparison of these signatures with mantle flow models thus allows mantle dynamics to be unraveled on global and regional scales. However, existing self-consistent models of CPO evolution are computationally expensive when used with 3-D and/or time-dependent convection models. Here we propose a new method, called ANPAR, which is based on an analytical parametrization of the crystallographic spin predicted by the second-order (SO) self-consistent theory. Our parametrization runs ≈2–6 × 104 times faster than the SO model and fits its predictions for CPO and crystallographic spin with a variance reduction >99 per cent. We illustrate the ANPAR model predictions for the deformation of olivine with three dominant slip systems, (010)[100], (001)[100] and (010)[001], for three uniform deformations (uniaxial compression, pure shear and simple shear) and for a corner-flow model of a spreading mid-ocean ridge.
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.rightsPost-print
dc.subjectMantle processes
dc.subjectCreep and deformation
dc.subjectSeismic anisotropy
dc.titleAnalytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy
dc.identifier.doi10.1093/gji/ggv304
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page334-350
ensam.journalGeophysical Journal International
ensam.volume203
hal.identifierhal-01229628
hal.version1
hal.statusaccept
dc.identifier.eissn1365-246X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record