Afficher la notice abrégée

dc.contributor.authorFRANZ, Gérald
dc.contributor.authorBEN ZINEB, Tarak
dc.contributor.authorLEMOINE, Xavier
dc.contributor.authorBERVEILLER, Marcel
dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2007
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10985/10435
dc.description.abstractThe development of a relevant constitutive model adapted to sheet metal forming simulations requires an accurate description of the most important sources of anisotropy, i.e. the slip processes, the intragranular substructure changes and the texture development. During plastic deformation of thin metallic sheets, strain-path changes often occur in the material resulting in macroscopic effects. These softening/hardening effects must be correctly predicted because they can significantly influence the strain distribution and may lead to flow localization, shear bands and even material failure. The main origin of these effects is related to the intragranular microstructure evolution. This implies that an accurate description of the dislocation patterning during monotonic or complex strain-paths is needed to lead to a reliable constitutive model. A crystal plasticity model coupled with an intragranular microstructure description, inspired by Peeters' works, is used to determine the single crystal behaviour and to describe the dislocation cells evolution. The scale transition between the local behaviour and the polycrystalline one is realized thanks to a large strain self-consistent approach. Moreover, the introduction of a ductility loss criterion, first introduced by Rice, based on the ellipticity loss of the elastic-plastic tangent modulus, is used to plot Ellipticity Loss Diagrams (ELD). Qualitative comparisons are made with experimental Forming Limit Diagrams (FLD) for ferritic steel for simple and complex loading paths. In particular, it is shown that numerical ELD have a shape close to experimental FLD and reproduce qualitatively the effects due to complex loading paths.
dc.description.sponsorshipCNRS & ArcelorMittal
dc.language.isoen
dc.rightsPost-print
dc.subjectIntergranular microstructure
dc.subjectDuctility loss
dc.subjectPlastic anisotropy evolution
dc.subjectForming Limit Diagram
dc.titleStrain localization analysis using a large strain self-consistent approach
dc.typdocCommunication sans acte
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Micro et nanotechnologies/Microélectronique
ensam.conference.titleShear 07, International Symposium on Shear Behavior and Mechanisms in Materials Plasticity
ensam.conference.date2007-09-04
ensam.countryFrance
ensam.cityNancy
hal.identifierhal-01232410
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept


Fichier(s) constituant cette publication

Thumbnail

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée