Show simple item record

dc.contributor.author
 hal.structure.identifier
BOUKTIR, Yasser
211506 Ecole Polytechnique Algerie
dc.contributor.author
 hal.structure.identifier
HADDAD, Moussa
96743 Laboratory of Structure Mechanics
dc.contributor.author
 hal.structure.identifier
CHALAL, Hocine
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorABED-MERAIM, Farid 
dc.date.accessioned2015
dc.date.available2017
dc.date.issued2016
dc.date.submitted2015
dc.identifier.issn0264-1275
dc.identifier.urihttp://hdl.handle.net/10985/10440
dc.description.abstractThe ductility limits of an St14 steel are investigated using an elastic‒plastic‒damage model and bifurcation theory. An associative J2-flow theory of plasticity is coupled with damage within the framework of continuum damage mechanics. For strain localization prediction, the bifurcation analysis is adopted. Both the constitutive equations and the localization bifurcation criterion are implemented into the finite element code ABAQUS, within the framework of large strains and a fully three-dimensional formulation. The material parameters associated with the fully coupled elastic‒plastic‒damage model are calibrated based on experimental tensile tests together with an inverse identification procedure. The above-described approach allows the forming limit diagrams of the studied material to be determined, which are then compared with experimental measurements. A main conclusion of the current study is that the proposed approach is able to provide predictions that are in good agreement with experiments under the condition of accurate material parameter calibration. The latter requires a careful identification strategy based on both calibrated finite element simulations of tensile tests at large strains and appropriately selected necking measurements. The resulting approach represents a useful basis for setting up reliable ductility limit prediction tools as well as effective parameter identification strategies.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectDuctile damage
dc.subjectFormability
dc.subjectStrain localization
dc.subjectBifurcation analysis
dc.subjectFinite element simulation
dc.subjectParameter identification
dc.titleInvestigation of ductility limits based on bifurcation theory coupled with continuum damage mechanics
ensam.embargo.terms2 Years
dc.identifier.doi10.1016/j.matdes.2015.11.052
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page969–978
ensam.journalMaterials and Design
ensam.volume90
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record