Afficher la notice abrégée

dc.contributor.author
 hal.structure.identifier
CARVALHO RESENDE, Tales
239210 Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux [LPMTM]
dc.contributor.authorSAADAOUI, Ayoub
dc.contributor.author
 hal.structure.identifier
BOUVIER, Salima
239210 Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux [LPMTM]
dc.contributor.authorSABLIN, Simon-Serge
dc.contributor.authorABED-MERAIM, Farid 
dc.contributor.author
 hal.structure.identifier
BALAN, Tudor
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2010
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10985/10457
dc.description.abstractWith a view to environmental, economic and safety concerns, car manufacturers need to design lighter and safer vehicles in ever-shorter development times. In recent years, High Strength Steels (HSS) like Interstitial Free (IF) steels, which have ratio of yield strength to elastic modulus, are increasingly used for sheet metal parts in automotive industry to reduce mass. The Finite Element Method (FEM) is quite successful to simulate metal forming processes but accuracy depends both on the constitutive laws used and their material parameters identification. Common phenomenological models roughly consist in the fitting of functions on experimental results and do not provide any predictive character for different metals from the same grade. Therefore, the use of accurate plasticity models based on physics would increase predictive capability, reduce parameter identification cost and allow for robust and time-effective finite element simulations. For this purpose, a 3D physically-based model at large strain with dislocation density evolution approach was presented in IDDRG2009 by the authors. This approach can be decomposed as a combination of isotropic and kinematic contributions. The model enables the description of work-hardening’s behaviour for different simple loading paths (i.e. uniaxial tensile, simple shear and Bauschinger tests) taking into account several data from microstructure (i.e. grain size, texture, etc.…). The originality of this model consists in the introduction of microstructure data in a classical phenomenological model in order to achieve work-hardening’s predictive character for different metals from the same grade. Indeed, thanks to a microstructure parameter set for IF steels, it is possible to describe work-hardening’s behaviour for different steels of grain sizes varying in the 8.5-22µm value range by only changing the mean grain size and initial yield stress values. Forming Limit Diagrams (FLDs) have been empirically constructed to describe the strain states at which a highly localized zone of thinning, or necking, becomes visible on the surface of sheet metals. FLDs can be experimentally obtained through Marciniak Stretch test, which is a modified dome test. It was designed to overcome the severe strain gradients developed by the traditional dome tests using a hemispherical punch (e.g. Nakajima test). Many automotive manufacturers use Marciniak Stretch test as a validation tool before simulating real parts. The work described is an implementation of a 3D dislocation based model in ABAQUS/Explicit together with its validation on a finite element (FE) Marciniak Stretch test. In order to assess the performance and relevance of the 3D dislocation based model in the simulation of industrial forming applications, FLDs will be plotted and compared to experimental results for different IF steels.
dc.description.sponsorshipContrat Renault
dc.language.isoen
dc.rightsPost-print
dc.subjectdislocation based model
dc.subjectIF steels
dc.subjectMarciniak Stretch test
dc.subjectFE simulation
dc.titleApplication of a dislocation based model for Interstitial Free (IF) steels to Marciniak Stretch test simulations
dc.typdocCommunication sans acte
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Micro et nanotechnologies/Microélectronique
ensam.conference.titleIV European Conference on Computational Mechanics: ECCM 2010
ensam.conference.date2010-05-16
ensam.countryFrance
ensam.cityParis
hal.identifierhal-01237352
hal.version1
hal.statusaccept


Fichier(s) constituant cette publication

Thumbnail

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée