Show simple item record

dc.contributor.author
 hal.structure.identifier
ROBERT, Camille
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.author
 hal.structure.identifier
SAINTIER, Nicolas
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.author
 hal.structure.identifier
PALIN-LUC, Thierry
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2012
dc.date.submitted2015
dc.identifier.issn0167-6636
dc.identifier.urihttp://hdl.handle.net/10985/10518
dc.description.abstractAn analysis of high cycle multiaxial fatigue behaviour is conducted through the numerical simulation of polycrystalline aggregates using the finite element method. The metallic material chosen for investigation is pure copper, which has a Face Centred Cubic (FCC) crystalline microstructure. The elementary volumes are modelled in 2D using an hypothesis of generalised plane strain and consist of 300 equi-probability, randomly oriented grains with equiaxed geometry. The aggregates are loaded at levels equivalent to the average macroscopic fatigue strength at 1E7 cycles. The goal is to compute the mechanical quantities at the mesoscopic scale (i.e., average within the grain) after stabilization of the local cyclic behaviour. The results show that the mesoscopic mechanical variables are characterised by high dispersion. A statistical analysis of the response of the aggregates is undertaken for different loading modes: fully reversed tensile loads, torsion and combined in-phase tension–torsion. Via the calculation of the local mechanical quantities for a sufficiently large number of different microstructures, a critical analysis of certain multiaxial endurance criteria (Crossland, Dang Van and Matake) is conducted. In terms of material behaviour models, it is shown that elastic anisotropy strongly affects the scatter of the mechanical parameters used in the different criteria and that its role is predominant compared to that of crystal plasticity. The analysis of multiaxial endurance criteria at both the macroscopic and mesoscopic scales clearly show that the critical plane type criteria (Dang Van and Matake) give an adequate estimation of the shear stress but badly reflect the scatter of the normal stress or the hydrostatic stress.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectMultiaxial high cycle fatigue
dc.subjectFinite element simulation
dc.subjectPolycrystalline aggregates
dc.subjectCubic elasticity
dc.subjectCrystal plasticity
dc.titleMicro-mechanical modelling of high cycle fatigue behaviour of metals under multiaxial loads
dc.identifier.doi10.1016/j.mechmat.2012.08.006
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.localisationCentre de Bordeaux-Talence
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.page112–129
ensam.journalMechanics of Materials
ensam.volume55
ensam.peerReviewingOui
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record