Show simple item record

dc.contributor.author
 hal.structure.identifier
GILDEMYN, Eric
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
DAL SANTO, Philippe
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
ROBERT, Camille
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
POTIRON, Alain
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorSAIDANE, Delphine
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2010
dc.date.submitted2016
dc.identifier.issn1751-5874
dc.identifier.urihttp://hdl.handle.net/10985/10576
dc.description.abstractThis paper deals with a numerical approach for improving the mechanical properties of a safety belt anchor by optimizing its shape and the manufacturing process by using a multi-objective genetic algorithm (NSGA-2). This kind of automotive component is typically manufactured in three stages: blanking, rounding of the edges by punching and finally bending (90°). This study focuses only on the rounding and bending processes. The numerical model is linked to the genetic algorithm (GA) in order to optimize the shape of the part and the process parameters. This is implemented by using ABAQUS© script files developed in the Python programming language and CATIA© script files in VBScript. The algorithm modifies the part’s design parameters in the CAD system, imports the model in STEP format into ABAQUS CAE and starts the Finite Elements Analysis (FEA) automatically. The material behaviour is modelled using a specific Lemaitre material damage formulation implemented in ABAQUS© via a FORTRAN user subroutine. The influence of two process parameters (the die radius and the rounding punch radius) and five shape parameters on the component behaviour is investigated. The search for the optimum component design depends on three objective functions which are (i) the material damage state at the end of the forming process, (ii) the von Mises stress field and (iii) the maximum von Mises stress in the folded zone. A global optimisation is finally performed in order to improve the ultimate unbending load and the volume of the safety part. This work has two major areas of innovation: (a) the improvement of the genetic algorithm NSGA-2; and (b) the development of an integrated numerical procedure including “Computer aided design” and “mechanical finite element simulation” controlled by the genetic algorithm.
dc.description.sponsorshipDEVILLE
dc.language.isoen
dc.publisherInderscience
dc.rightsPost-print
dc.subjectOptimization
dc.subjectGenetic Algorithms (GA)
dc.subjectFinite Elements Method
dc.subjectMaterial Damage
dc.subjectNeural Networks
dc.titleSafety part design optimisation based on the finite elements method and a genetic algorithm
dc.identifier.doi10.1504/IJDE.2010.034860
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.localisationCentre de Châlons-en-Champagne
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page1-19
ensam.journalInternational Journal of Design Engineering
ensam.volume3
ensam.issue2
ensam.peerReviewingOui
hal.identifierhal-01281112
hal.version1
hal.statusaccept
dc.identifier.eissn1751-5882


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record