Show simple item record

dc.contributor.authorAKPAMA, Holanyo K.
dc.contributor.authorBEN BETTAIEB, Mohamed
dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn0029-5981
dc.identifier.urihttp://hdl.handle.net/10985/10654
dc.description.abstractIn an incremental formulation suitable to numerical implementation, the use of rate-independent theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the set of potentially active slip systems over a time increment. The second is to select the active slip systems among the potentially active ones. The third is to compute the slip rates (or the slip increments) for the active slip systems. And the last problem is the possible non-uniqueness of slip rates. The purpose of this paper is to propose satisfactory responses to the above-mentioned first three issues by presenting and comparing two novel numerical algorithms. The first algorithm is based on the usual return-mapping integration scheme, while the second follows the so-called ultimate scheme. The latter is shown to be more relevant and efficient than the former. These comparative performances are illustrated through various numerical simulations of the mechanical behavior of single crystals and polycrystalline aggregates subjected to monotonic and complex loadings. Although these algorithms are applied in this paper to Body-Centered-Cubic (BCC) crystal structures, they are quite general and suitable for integrating the constitutive equations for other crystal structures (e.g., FCC and HCP).
dc.language.isoen
dc.publisherWiley
dc.rightsPost-print
dc.subjectIntegration algorithm
dc.subjectFinite strain
dc.subjectCrystal plasticity
dc.subjectRate-independent framework
dc.subjectSchmid’s law
dc.subjectMultisurface plasticity
dc.titleNumerical integration of rate-independent BCC single crystal plasticity models: comparative study of two classes of numerical algorithms
ensam.embargo.terms2017-02-21
dc.identifier.doi10.1002/nme.5215
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Micro et nanotechnologies/Microélectronique
ensam.audienceInternationale
ensam.page97
ensam.journalInternational Journal for Numerical Methods in Engineering
ensam.peerReviewingOui
hal.identifierhal-01292713
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept
dc.identifier.eissn1097-0207


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record