Show simple item record

dc.contributor.author
 hal.structure.identifier
BIGERELLE, Maxence
11230 Laboratoire de Métallurgie Physique et Génie des Matériaux [LMPGM]
dc.contributor.author
 hal.structure.identifier
IOST, Alain
11230 Laboratoire de Métallurgie Physique et Génie des Matériaux [LMPGM]
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2004
dc.date.submitted2015
dc.identifier.issn0960-0779
dc.identifier.urihttp://hdl.handle.net/10985/10835
dc.description.abstractThis article presents a new method for the study of the evolution of dynamic systems based on the notion of quantity of information. The system is divided into elementary cells and the quantity of information is studied with respect to the cell size. We have introduced an analogy between quantity of information and entropy, and defined the intrinsic entropy as the entropy of the whole system independent of the size of the cells. It is shown that the intrinsic entropy follows a Gaussian probability density function (PDF) and thereafter, the time needed by the system to reach equilibrium is a random variable. For a finite system, statistical analyses show that this entropy converges to a state of equilibrium and an algorithmic method is proposed to quantify the time needed to reach equilibrium for a given confidence interval level. A Monte-Carlo simulation of diffusion of A* atoms in A is then provided to illustrate the proposed simulation. It follows that the time to reach equilibrium for a constant error probability, te, depends on the number, n, of elementary cells as: te∝n2.22±0.06. For an infinite system size (n infinite), the intrinsic entropy obtained by statistical modelling is a pertinent characteristic number of the system at the equilibrium.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.titleMultiscale measures of equilibrium on finite dynamic systems
dc.identifier.doi10.1016/S0960-0779(03)00338-2
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Lille
dc.subject.halChimie: Matériaux
dc.subject.halMathématique: Théorie de l'information et codage
dc.subject.halSciences de l'ingénieur: Matériaux
ensam.audienceInternationale
ensam.page1313-1322
ensam.journalChaos, Solitons and Fractals
ensam.volume19
ensam.issue5
ensam.peerReviewingOui
hal.identifierhal-03169280
hal.version1
hal.date.transferred2021-06-24T06:52:26Z
hal.submission.permittedtrue
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record