Show simple item record

dc.contributor.authorSHIRINBAYAN, Mohammadali
dc.contributor.author
 hal.structure.identifier
SUROWIEC, Benjamin
151834 Plastic Omnium Auto Extérieur Service [POAES]
dc.contributor.authorBOCQUET, Michel
dc.contributor.author
 hal.structure.identifier
TCHARKHTCHI, Abbas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorFITOUSSI, Joseph
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2015
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10985/10836
dc.description.abstractAdvanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to standard SMC with less than 30% weight fiber content. During crash events, structural parts are heavily exposed to high rates of loading and straining. This work is concerned with the development of an advanced experimental approach devoted to the micro and macroscopic characterization of A-SMC mechanical behavior under high-speed tension. High speed tensile test are achieved using servo-hydraulic test equipment in order to get required high strain rates up to 100 s -1 . Local deformation is measured through a contactless technique using a high speed camera. Numerical computations have led to an optimal design of the specimen geometry and the experimental damping systems have been optimised in terms of thickness and material properties. These simulations were achieved using ABAQUS explicit finite element code. The developed experimental methodology is applied for two types of A-SMC: Randomly Oriented fibers (RO) and Highly Oriented fibers (HO) plates. In the case of HO samples, two tensile directions were chosen: HO-0° (parallel to the Mold Flow Direction (MFD)) and HO-90° (perpendicular to the MFD). High speed tensile tests results show that A-SMC behavior is strain-rate dependent although the young’s modulus remains constant with increasing strain rate. In the case of HO-0°, the stress damage threshold is shown an increase of 63%, when the strain rate varies from quasi-static (0.001 s -1 ) to 100 s -1 .
dc.language.isoen
dc.rightsPost-print
dc.subjectA-SMC
dc.subjectGlass fibers
dc.subjectHigh strain rate
dc.subjectFiber/matrix bond
dc.subjectDelamination
dc.titleMicro and macroscopic characterization of A-SMC under high speed tensile test
dc.typdocConférence invitée
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.conference.title20th International Conference on Composite Materials
ensam.conference.date2015-07-19
ensam.countryDanemark
ensam.cityCopenhague
ensam.peerReviewingOui
ensam.proceedingNon
hal.identifierhal-01320350
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record