Show simple item record

dc.contributor.authorCHEMISKY, Yves
dc.contributor.authorBOURGEOIS, Nadine
dc.contributor.author
 hal.structure.identifier
CORNELL, Stephen
205111 Department of Aerospace Engineering [College Station] [TAMU]
dc.contributor.authorECHCHORFI, Rachid
dc.contributor.authorPATOOR, Etienne
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2015
dc.date.submitted2015
dc.identifier.isbn978-1-119-06527-2
dc.identifier.urihttp://hdl.handle.net/10985/10837
dc.description.abstractWith the design of new devices with complex geometry and to take advantage of their large recoverable strains, shape memory alloys components (SMA) are increasingly subjected to multiaxial loadings. The development process of SMA devices requires the prediction of their thermomechanical response, where the calibration of the material parameters for the numerical model is an important step. In this work, the parameters of a phenomenological model are extracted from multiaxial and heterogeneous tests carried out on specimens with the same thermomechanical loading history. Finite element analysis enables the computation of numerical strain fields using a thermodynamical constitutive model for shape memory alloys previously implemented in a finite element code. The strain fields computed numerically are compared with experimental ones obtained by DIC to find the model parameters which best matches experimental measurements using a newly developed parallelized mixed genetic/gradient-based optimization algorithm. These numerical simulations are carried out in parallel in a supercomputer to reduce the time necessary to identify the set of identified parameters. The major features of this new algorithm is its ability to identify material parameters of the thermomechanical behavior of shape memory alloys from full-field measurements for various loading conditions (different temperatures, multiaxial behavior, heterogeneous test configurations). It is demonstrated that model parameters for the simulation of SMA structures are thus obtained based on a reduced number of heterogeneous tests at different temperatures.
dc.description.sponsorshipNSF International Institute of Multifunctional Materials for Energy Conversion (IIMEC), award #0841082
dc.language.isoen
dc.publisherIbrahim Karaman, Raymundo Arróyave and Eyad Masad/ Wiley
dc.rightsPost-print
dc.subjectIdentification
dc.subjectoptimization
dc.subjectShape Memory Alloys
dc.subjectheterogeneous tests
dc.titleIdentification of Model Parameter for the Simulation of SMA Structures Using Full Field Measurements
dc.identifier.doi10.1002/9781119090427.ch19
dc.typdocConférence invitée
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.conference.titleTMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015)
ensam.conference.date2015-01-11
ensam.countryQatar
ensam.cityDoha
ensam.peerReviewingOui
ensam.proceedingOui
hal.identifierhal-02521484
hal.version1
hal.date.transferred2020-03-27T13:44:51Z
hal.submission.permittedTrue
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record