Show simple item record

dc.contributor.author
 hal.structure.identifier
GUILLEMOT, Gildas
1252 Laboratoire de Mécanique de Lille - FRE 3723 [LML]
dc.contributor.authorAVETTAND-FÈNOËL, Marie-Noëlle
dc.contributor.author
 hal.structure.identifier
IOST, Alain
1252 Laboratoire de Mécanique de Lille - FRE 3723 [LML]
dc.contributor.authorFOCT, Jacques
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2011
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10985/10843
dc.description.abstractHot-dipping galvanizing process is a widely used and efficient way to protect steel from corrosion. We propose to master the microstructure of zinc grains by investigating the relevant process parameters. In order to improve the texture of this coating, we model grain nucleation and growth processes and simulate the zinc solid phase development. A coupling scheme model has been applied with this aim. This model improves a previous two-dimensional model of the solidification process. It couples a cellular automaton (CA) approach and a finite element (FE) method. CA grid and FE mesh are superimposed on the same domain. The grain development is simulated at the micro-scale based on the CA grid. A nucleation law is defined using a Gaussian probability and a random set of nucleating cells. A crystallographic orientation is defined for each one with a choice of Euler's angle (Ψ,θ,φ). A small growing shape is then associated to each cell in the mushy domain and a dendrite tip kinetics is defined using the model of Kurz [2]. The six directions of basal plane and the two perpendicular directions develop in each mushy cell. During each time step, cell temperature and solid fraction are then determined at micro-scale using the enthalpy conservation relation and variations are reassigned at macro-scale. This coupling scheme model enables to simulate the three-dimensional growing kinetics of the zinc grain in a two-dimensional approach. Grain structure evolutions for various cooling times have been simulated. Final grain structure has been compared to EBSD measurements. We show that the preferentially growth of dendrite arms in the basal plane of zinc grains is correctly predicted. The described coupling scheme model could be applied for simulated other product or manufacturing processes. It constitutes an approach gathering both micro and macro scale models.
dc.description.sponsorshipThe authors would like to thank the International Lead Zinc Research Organization (ILZRO) for the financial support supplied to this research project.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.rightsPost-print
dc.subjectGalvanizing process
dc.subjectCoupling scheme model
dc.subjectCellular Automaton
dc.subjectFinite Element
dc.titleA Cellular Automaton / Finite Element model for predicting grain texture development in galvanized coatings
dc.identifier.doiorg/10.1063/1.3552535
dc.typdocCommunication avec acte
dc.localisationCentre de Lille
dc.subject.halChimie: Cristallographie
dc.subject.halChimie: Matériaux
dc.subject.halPhysique: matière Condensée: Science des matériaux
dc.subject.halSciences de l'ingénieur: Matériaux
ensam.audienceInternationale
ensam.conference.titleInternational Conference on Advances in Materials and Processing Technologies (AMPT2010
ensam.conference.date2015-07-24
ensam.countryFrance
ensam.title.proceedingAIP Conference Proceedings
ensam.page727-732
ensam.volume1315
ensam.cityParis
ensam.peerReviewingOui
ensam.invitedCommunicationNon
ensam.proceedingOui
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record