Show simple item record

dc.contributor.author
 hal.structure.identifier
ROY, Samir Chandra
32956 Science et Ingénierie des Matériaux et Procédés [SIMaP]
dc.contributor.author
 hal.structure.identifier
FRANC, Jean-Pierre
704 Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] [LEGI]
dc.contributor.author
 hal.structure.identifier
FIVEL, Marc
32956 Science et Ingénierie des Matériaux et Procédés [SIMaP]
dc.contributor.author
 hal.structure.identifier
RANC, Nicolas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2015
dc.date.submitted2016
dc.identifier.issn0043-1648
dc.identifier.urihttp://hdl.handle.net/10985/10861
dc.description.abstractCavitation erosion is a well-known problem in fluid machineries which occurs due to repeated hydrodynamic impacts caused by cavitation bubble collapse. Cavitation pitting test is often used for the quantification of flow aggressiveness required for lifetime prediction of hydraulic equipment. Understanding the response of the target material under such hydrodynamic impact is essential for correctly interpreting the results obtained by cavitation pitting test. Moreover the proper knowledge of cavitation pitting mechanism would enable us to design new materials more resistant to cavitation erosion. In this paper, the dynamic behavior of three materials 7075 Aluminum alloy, 2205 duplex stainless steel and Nickel–Aluminum Bronze under cavitation hydrodynamic impact has been studied in details by using finite element simulations. The applied load due to hydrodynamic impact is represented by a Gaussian pressure field which has a peak stress and, space and time evolution of Gaussian type. Mechanism of cavitation pit formation and the effect of inertia and strain rate sensitivity of the materials have been discussed. It is found that if the impact duration is very short compared to a characteristic time of the material based on its natural frequency, no pit would form into the material even if the impact stress is very high. It is also found that strain rate sensitivity reduces the size of the deformed region and thereby could enhance the cavitation erosion resistance of the material.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectCavitation pitting
dc.subjectFinite element simulation
dc.subjectStrain rate sensitivity
dc.subjectNatural frequency
dc.subjectCavitation pitting mechanism
dc.titleDetermination of cavitation load spectra—Part 2: Dynamic finite element approach
ensam.embargo.terms2017-09-24
dc.identifier.doi10.1016/j.wear.2015.09.005
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page120–129
ensam.journalWear
ensam.volume344-345
ensam.peerReviewingOui
hal.description.error{"duplicate-entry":{"hal-01243001":{"doi":"1.0"}}}
hal.submission.permittedtrue
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record