Show simple item record

Analyse et modélisation du comportement en fatigue des alliages d'aluminium de fonderie

dc.contributor.author
 hal.structure.identifier
LE, Viet Duc
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
7736 PSA Peugeot - Citroën [PSA]
dc.contributor.authorBELLETT, Daniel
dc.contributor.author
 hal.structure.identifier
SAINTIER, Nicolas
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.author
 hal.structure.identifier
OSMOND, Pierre
7736 PSA Peugeot - Citroën [PSA]
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorPESSARD, Etienne
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2015
dc.date.submitted2016
dc.identifier.issn1877-7058
dc.identifier.urihttp://hdl.handle.net/10985/10874
dc.description.abstractThis paper describes a microstructural-based high cycle fatigue behaviour model applied to cast Al-Si alloys used in an automobile context. These materials are characterized by the presence of different microstructural heterogeneities at different scales: the aluminium matrix (DAS/SDAS and the precipitation hardening level), inclusions (Si particles and intermetallic) and casting defects (porosity). It is shown that the effects of these factors on the HCF damage mechanisms are important and can depend on the loading mode. A multiaxial fatigue test campaign has been carried out using three cast aluminium alloys, fabricated by different casting processes (gravity die casting and lost foam casting), associated with several heat treatment(T7 and Hot Isostatic Pressing-HIP). The HIP treatment is used to eliminate or minimise the porosity. The first part of the article is dedicated to the experimental characterization of the HCF damage mechanisms. With regard to the effect of the casting defects, a study of natural fatigue crack growth and artificial long crack growth is presented and subsequently used to choose an appropriate fatigue strength criterion to take into account the effect of defects, for different loading modes (tension, torsion and combined tension-torsion). Finally, a flexible modelling framework, providing the possibility of combining any two suitable criteria, which leads to the construction of a multiaxial Kitagawa-Takahashi diagram, is used.
dc.description.sponsorshipThis work was financially supported be PSA Peugeot Citroën
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHigh cycle fatigue
dc.subjectMultiaxial
dc.subjectCast aluminium alloy
dc.subjectDefect
dc.subjectModelling
dc.subjectProbabilistic
dc.titleMicrostructural-based analysis and modelling of the fatigue behaviour of cast Al-Si alloys
dc.titleAnalyse et modélisation du comportement en fatigue des alliages d'aluminium de fonderie
dc.identifier.doi10.1016/j.proeng.2015.12.630
dc.typdocCommunication avec acte
dc.localisationCentre de Angers
dc.localisationCentre de Bordeaux-Talence
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.conference.titleFatigue Design Conference (6;2015; Senlis)
ensam.conference.date2015-11-18
ensam.countryFrance
ensam.title.proceedingProcedia Engineering
ensam.page562–575
ensam.volume133
ensam.languagefr
ensam.citySenlis
ensam.peerReviewingOui
ensam.invitedCommunicationNon
ensam.proceedingOui
atmire.embargo.exceedingyes
hal.identifierhal-02486657
hal.version1
hal.date.transferred2020-02-21T09:11:45Z
hal.submission.permittedtrue
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record