Show simple item record

dc.contributor.author
 hal.structure.identifier
ZGHAL, Jihed
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorGMATI, Hela
dc.contributor.author
 hal.structure.identifier
MAREAU, Charles
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn1056-7895
dc.identifier.urihttp://hdl.handle.net/10985/11139
dc.description.abstractIn this paper, a polycrystalline model is proposed to describe the fatigue behaviour of metallic materials in the high cycle fatigue regime. The model is based on a multiscale approach, which allows the connection of local deformation and damage mechanisms to macroscopic behaviour. To consider the anisotropy of plastic properties, the constitutive model is developed at the grain scale within a crystal plasticity framework. A phenomenological approach, which requires the introduction of a damage variable for each slip system, is used to account for the anisotropic nature of damage. The constitutive model is then integrated within a self-consistent formulation to consider the polycrystalline nature of metallic materials. Finally, the proposed model is used to describe the high cycle fatigue behaviour of a medium carbon steel (0.35% C). With a proper adjustment of material parameters, the model is capable of correctly reproducing fatigue test results, even for complex loading conditions (multiaxial, non-proportional). According to the model, damage is found to be highly localized in some specific grains. Also, while fatigue damage results in a progressive decrease in elastic stiffness at the crystal scale, the elastic properties are not significantly affected at the macroscopic scale. The model is used to study the correlation and fatigue damage. According to the numerical results, no evident correlation between fatigue damage and energy dissipation is observed.
dc.language.isoen
dc.publisherSAGE Publications
dc.rightsPost-print
dc.subjectcrystal plasticity
dc.subjectfatigue
dc.subjectdamage
dc.titleA crystal plasticity based approach for the modelling of high cycle fatigue damage in metallic materials
ensam.embargo.terms2017-07-01
dc.identifier.doi10.1177/1056789516650247
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page611-628
ensam.journalInternational Journal of Damage Mechanics
ensam.volume25
ensam.issue5
ensam.peerReviewingOui
hal.identifierhal-01361077
hal.version1
hal.statusaccept
dc.identifier.eissn1530-7921


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record