Show simple item record

dc.contributor.authorBONNAY, Kevin
dc.contributor.authorDESPRINGRE, Nicolas
dc.contributor.authorCHEMISKY, Yves
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2016
dc.date.submitted2016
dc.identifier.isbn978-3-00-053387-7
dc.identifier.urihttp://hdl.handle.net/10985/11174
dc.description.abstractDue to the compromise between their thermomechanical properties and low density, Short Fiber Reinforced Polyamides (SFRP) present a good alternative to metals for automotive structural components. The microstructure of such materials, combined with the matrix sensitivity to environmental conditions, has a strong impact on their overall behavior and the related damage. A new multi-scale modelling strategy is proposed, based on the experimental observations of interfacial damage evolution for PA66-GF30 composites. Three main key-points have been integrated to this approach: an original damage evolution law at the interface, an appropriate load transfer law at the matrix-fiber interface, and a homogenization strategy founded on the generalized Mori-Tanaka scheme. The damage evolution law is driven by a local probabilistic criterion based on the interfacial stress field estimation. This type of evolution depends on the maximal local damage rate at the fiber/matrix interface, determined from a numerical evaluation at several points of the interface surrounding the inclusion. It is then coupled with a load transfer law formulated according to a modified shear lag model (SLM). The developed model is assessed with a finite element (FE) computation integrating cohesive elements at the matrix-fiber interface. The FE unit cell consists in a periodic media (hexagonal array) with periodic boundary conditions. The fiber-matrix interface integrates cohesive elements, with a cohesive law driven by a Paulino-Park-Roesler (PPR) potential-based formulation. The latter has been proven to be suitable for the 3D modeling of interface in reinforced composites. The proposed approach is able to accurately capture the non-linear behavior of short fiber reinforced polyamide composites accounting for interfacial damage.
dc.description.sponsorshipFUI project Durafip, driven by Dr. Gilles Robert of Solvay Engineering Plastics
dc.language.isoen
dc.rightsPost-print
dc.subjectInterface
dc.subjectDecohesion
dc.subjectCohesive zone
dc.subjectComposite
dc.subjectDamage
dc.titleInterfacial damage and load transfermodeling in short fiber reinforced composites
dc.typdocConférence invitée
dc.localisationCentre de Metz
dc.localisationInstitut de Chambéry
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.conference.titleECCM17 - 17 th European Conference on Composite Materials
ensam.conference.date2016-06-26
ensam.countryAllemagne
ensam.cityMunich
ensam.peerReviewingOui
ensam.proceedingOui
hal.identifierhal-01363857
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record