Show simple item record

dc.contributor.author
 hal.structure.identifier
RAMAN, Venkadesh
235335 Institut de Recherche Technologique Jules Verne [Bouguenais] [IRT Jules Verne]
dc.contributor.author
 hal.structure.identifier
DRISSI-HABTI, Monssef
221984 Matériaux, Assemblages, composites, Structures Instrumentées [IFSTTAR/COSYS/MACSI]
dc.contributor.author
 hal.structure.identifier
KHADHOUR, Aghihad
221984 Matériaux, Assemblages, composites, Structures Instrumentées [IFSTTAR/COSYS/MACSI]
dc.contributor.author
 hal.structure.identifier
GUILLAUMAT, Laurent
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn1359-8368
dc.identifier.urihttp://hdl.handle.net/10985/11183
dc.description.abstractOffshore wind energy is one of the main sources of renewable energy that can benefit from new generation materials that exhibit good oxidation resistance and mechanical reliability. Composite materials are the best consideration for harsh environment and deep sea wind turbine manufacturing. In this study, a numerical simulation was implemented to predict the stress distribution over a wind turbineblade and to determine areas with high stress concentration. Finite Element Analysis (FEA) was used to find optimal material and bonding techniques to construct the blade. By using Abaqus commercial software, a finite element model of wind turbine blade was analyzed under bending-torsion coupled with a static-load condition in flap-wise direction. Structural damage in critical zones varies according to ply orientation and stack thickness as a result of composite orthotropic nature. This study leads existing scenarios and techniques which would provide a new and better solutions for wind turbine blade designers. The root section and trailing edge were found to be critical zones in the wind turbine blade. The root section failure can be reduced by (1) adjusting the thickness of the structure or increasing the number of plies in the composites laminate stacking and by (2) adjusting the bonding technique to prevent trailing-edge failure. Transverse-stitch method and the carbon cord tying methods are most effective for trailing edge reinforcement. Both solutions are proposed to reduce failures in wind turbine blades and proven by step-by-step numerical study. The goal of this study is to deliver a good reference for wind turbine blade designers and to improve the accuracy during design phase as well as to avoid failure.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectComposite material
dc.subjectFailure criterion
dc.subjectComposite stitching
dc.subjectAdhesive bonding
dc.subjectPly stacking
dc.subjectWind energy
dc.subjectFinite element analysis
dc.subjectNumerical modeling
dc.titleNumerical simulation analysis as a tool to identify areas of weakness in a turbine wind-blade and solutions for their reinforcement
ensam.embargo.terms2018-10-01
dc.identifier.doi10.1016/j.compositesb.2016.07.018
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page23-29
ensam.journalComposites Part B: Engineering
ensam.issue103
ensam.peerReviewingOui
hal.identifierhal-02486653
hal.version1
hal.date.transferred2020-02-21T09:10:25Z
hal.submission.permittedtrue
hal.statusaccept
dc.identifier.eissn1879-1069


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record