Show simple item record

dc.contributor.authorLE, Viet Duc
dc.contributor.authorBELLETT, Daniel
dc.contributor.author
 hal.structure.identifier
OSMOND, Pierre
7736 PSA Peugeot - Citroën [PSA]
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
SAINTIER, Nicolas
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/11184
dc.description.abstractThis article describes a microstructural-based high cycle fatigue strength modelling approach applied to different cast Al-Si alloys used in an automotive context. Thank to different casting processes (gravity die casting and lost foam casting), associated with several heat treatment (T7 and Hot Isostatic Pressing-HIP), three alloys with very different microstructures have been obtained. In a vast experimental campaign undertaken to investigate the fatigue damage mechanisms governing these alloys under different multiaxial loading conditions, it was shown that the principal crack initiation mechanisms for the porosity-free alloy are either the formation of persistent slip bands (PSB) or the rupture and/or debonding of eutectic particles. For the porosity-containing alloys, the fatigue damage is always controlled by crack growth from pores. In order to take into account these fatigue damage mechanisms, a probabilistic model using a combination of the Dang Van and a modified LEFM criteria is proposed. The modified LEFM criterion is able to take into account the influence of the grain size on the threshold of the stress intensity factor. It is shown that for the porosity-free alloy, the predictions are good for combined tension-torsion loads with R = - 1. However, because the crack initiation mechanisms are not the same depending on the hydrostatic stress, the predictions are non-conservative for the uniaxial and equibiaxial tension oads with R = 0,1. For the porosity-containing alloys, the predictions are very good for the uniaxial, combined tension-torsion and equibiaxial tension loads with both R = - 1and R = 0,1. As observed experimentally, the proposed model can also predict a more pronounced effect of casting porosity for the uniaxial and combined tension-torsion loads, when compared to pure torsion loads.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHigh cycle fatigue
dc.subjectMultiaxial
dc.subjectCast aluminium alloy
dc.subjectSDAS
dc.subjectGrain size
dc.subjectPorosity
dc.subjectModelling
dc.subjectProbabilistic
dc.subjectKitagawa diagram
dc.titleSimulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads
ensam.embargo.terms2018-12
dc.identifier.doi10.1016/j.ijfatigue.2016.08.014
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.localisationCentre de Bordeaux-Talence
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page109-121
ensam.journalInternational Journal of Fatigue
ensam.issue93
ensam.peerReviewingOui
atmire.embargo.exceedingyes
hal.submission.permittedtrue
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record