Show simple item record

dc.contributor.authorAKPAMA, Holanyo K.
dc.contributor.authorBEN BETTAIEB, Mohamed
dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2016
dc.date.available2016
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn1679-7817
dc.identifier.urihttp://hdl.handle.net/10985/11189
dc.description.abstractThe aim of this paper is to investigate the impact of the microscopic yield surface (i.e., at the single crystal scale) on the forming limit diagrams (FLDs) of face centred cubic (FCC) materials. To predict these FLDs, the bifurcation approach is used within the framework of rate-independent crystal plasticity theory. For this purpose, two micromechanical models are developed and implemented. The first one uses the classical Schmid law, which results in the formation of vertices (or corners) at the yield surface, while the second is based on regularization of the Schmid law, which induces rounded corners at the yield surface. In both cases, the overall macroscopic behavior is derived from the behavior of the microscopic constituents (the single crystals) by using two different scale-transition schemes: the selfconsistent approach and the Taylor model. The simulation results show that the use of the classical Schmid law allows predicting localized necking at realistic strain levels for the whole range of strain paths that span the FLD. However, the application of a regularized Schmid law results in much higher limit strains in the range of negative strain paths. Moreover, rounding the yield surface vertices through regularization of the Schmid law leads to unrealistically high limit strains in the range of positive strain paths.
dc.language.isoen
dc.publisherArgentinean Association of Computational Mechanics, Brazilian Association of Computational Mechanics, Mexican Association of Numerical Methods in Engineering and Applied Sciences
dc.rightsPost-print
dc.subjectcrystal plasticity
dc.subjectrate-independent theory
dc.subjectself-consistent model
dc.subjectTaylor model
dc.subjectbifurcation approach
dc.titleInfluence of the Yield Surface Curvature on the Forming Limit Diagrams Predicted by Crystal Plasticity Theory
dc.identifier.doi10.1590/1679-78252456
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page2231-2250
ensam.journalLatin American Journal of Solids and Structures
ensam.volume13
ensam.issue12
ensam.peerReviewingOui
hal.identifierhal-01366647
hal.version1
hal.statusaccept
dc.identifier.eissn1679-7825


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record