Show simple item record

dc.contributor.author
 hal.structure.identifier
NIKITIN, Alexander
116205 Université Paris Nanterre [UPN]
dc.contributor.author
 hal.structure.identifier
PALIN-LUC, Thierry
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.author
 hal.structure.identifier
SHANYAVSKIY, Andrey
217892 Russian Academy of Sciences [Moscow] [RAS]
dc.contributor.author
 hal.structure.identifier
BATHIAS, Claude
116205 Université Paris Nanterre [UPN]
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn0013-7944
dc.identifier.urihttp://hdl.handle.net/10985/11223
dc.description.abstractThis paper discusses features of fatigue crack initiation and growth in an extruded and forged VT3-1 titanium alloy loaded in pure torsion in the gigacycle regime. Torsion fatigue tests were performed at 20 kHz up to a fatigue life of 109 cycles. It has been shown that regardless of the manufacturing process both surface and subsurface crack initiation may appear under ultrasonic torsion loads despite the fact that the maximum shear stress amplitude is located at the specimen surface. In the two cases cracks initiate on planes of maximum shear stress amplitude (mode II). After reaching a certain length the cracks turn and propagate in mode I. Surface crack initiation and growth mechanisms in VHCF regime are similar to HCF ones. Subsurface crack forms a typical ‘‘fish-eye” pattern on fracture surface with three different zones: (1) small crack growth in the plane of maximum shear stress, (2) crack growth on the plane of maximum normal stress with the formation of a quasi-flat failure surface covered by fretting debris, (3) crack branching under mixed mode loading conditions (I + II + III) with the formation of several secondary cracks. Subsurface crack initiation sites are located below the specimen surface (at a depth of approximately 200 lm) for both the forged and the extruded materials. Subsurface crack growth is observed on the failure surface as being less rough. The mechanisms of subsurface crack initiation seems to be similar to these observed under fully reversed tensile loads.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectTitanium alloy
dc.subjectVery-high cycle fatigue
dc.subjectTorsion
dc.subjectCrack initiation
dc.subjectCrack growth
dc.subjectCrack path
dc.titleComparison of crack paths in a forged and extruded aeronautical titanium alloy loaded in torsion in the gigacycle fatigue regime
ensam.embargo.terms2018-09-01
dc.identifier.doi10.1016/j.engfracmech.2016.05.013
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Bordeaux-Talence
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page1-14
ensam.journalEngineering Fracture Mechanics
ensam.peerReviewingOui
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record