Show simple item record

dc.contributor.author
 hal.structure.identifier
GUERCHAIS, Raphaël
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
1167 Laboratoire de mécanique des solides [LMS]
dc.contributor.author
 hal.structure.identifier
SCALET, Giulia
1167 Laboratoire de mécanique des solides [LMS]
dc.contributor.author
 hal.structure.identifier
CONSTANTINESCU, Andrei
1167 Laboratoire de mécanique des solides [LMS]
dc.contributor.authorAURICCHIO, Ferdinando
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/11316
dc.description.abstractThe present paper introduces a methodology for the high-cycle fatigue design of balloon-expandable stents. The proposed approach is based on a micromechanical model coupled with a probabilistic methodology for the failure prediction of stents. This allows to account for material heterogeneity and scatter, to introduce a fatigue criterion able to consider stress gradients, and to perform a probabilistic analysis to obtain general predictions from a limited number of realizations of microstructures investigated. Numerical simulations have allowed to highlight the noteworthy characteristics of the mechanical response in the stent as well as the heterogeneity of the mechanical fields due to stress concentrations in the unit cell geometry and to strain incompatibilities between the grains induced by the anisotropy of their mechanical behavior. The predicted survival probability of the stent is in accordance with the experimental data from the literature. Moreover, the influence of the amplitude of the arterial pressure on the fatigue strength of the stent has been evaluated.
dc.description.sponsorshipThis work is funded by the French National Research Agency (Project Fast3D-ANR-11-BS09-012-01) and by the Fondazione Cariplo(Grant 2013-1779). The authors would like to acknowledge Dr. Michele Conti for his useful advice and for providing the three- dimensional stent mesh used in the present work.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectBalloon-expandable stent
dc.subjectCrystal plasticity
dc.subjectHigh-cycle fatigue
dc.subjectMicromechanics
dc.subjectProbabilistic failure prediction
dc.titleMicromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue
ensam.embargo.terms2018-06-01
dc.identifier.doi10.1016/j.ijfatigue.2016.02.026
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page405-417
ensam.journalInternational Journal of Fatigue
ensam.volume87
ensam.peerReviewingOui
hal.identifierhal-01392531
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record