Show simple item record

dc.contributor.author
 hal.structure.identifier
MAREAU, Charles
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
ROBERT, Camille
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn0167-6636
dc.identifier.urihttp://hdl.handle.net/10985/11476
dc.description.abstractFFT-based homogenization methods aim at calculating the effective behavior of heterogeneous materials with periodic microstructures. These methods operate on a regular grid of voxels, and hence require an appropriate spatial discretization of periodic microstructures. However, when different microstructural length scales are involved, it is not always possible to have sufficient spatial resolutions to explicitly consider the influence of fine microstructural features (e.g. voids, second-phase particles). To circumvent this difficulty, one solution consists of using composite voxel methods to define the effective properties and the effective internal variables of heterogeneous voxels. In this work, different composite voxel methods are proposed to deal with inelastic materials with mul- tiple length scales. These methods use simple homogenization rules to calculate the effective behavior of heterogeneous voxels. The first part of this paper is dedicated to the description of the composite voxel methods, which are based either on the Voigt, laminate structure or Mori–Tanaka approximations. In the second part, these methods are used to model the elasto-plastic behavior of a pearlitic steel poly- crystalline aggregate. According to the results, the Voigt approximation, which ignores morphological fea- tures, is not appropriate for treating heterogeneous voxels. When morphological information is accounted for, with either the laminate structure or Mori–Tanaka approximations, a better agreement with experi- mental observations is obtained. Though none of these methods is universal, they offer some possibilities to investigate the mechanical behavior of heterogeneous materials involving multiple length scales.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHomogenization
dc.subjectInterfaces
dc.subjectFFT method
dc.subjectHeterogeneous materials
dc.titleDifferent composite voxel methods for the numerical homogenization of heterogeneous inelastic materials with FFT-based techniques
ensam.embargo.terms2017-08-01
dc.identifier.doi10.1016/j.mechmat.2016.12.002
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page157-165
ensam.journalMechanics of Materials
ensam.volume105
ensam.peerReviewingOui
hal.identifierhal-01433013
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record