Show simple item record

dc.contributor.author
 hal.structure.identifier
BENTOUMI, Mohamed
242506 Université Ferhat-Abbas Sétif 1 [Sétif] [UFAS1]
dc.contributor.author
 hal.structure.identifier
MDARHRI, A.
186562 Laboratoire de Minéralogie et Cosmochimie du Muséum [LMCM]
dc.contributor.author
 hal.structure.identifier
NOURDINE, A.
764 Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces [LEPMI ]
dc.contributor.author
 hal.structure.identifier
EL ABOUDI, I.
60436 Laboratoire de Chimie Moléculaire et Environnement [LCME]
dc.contributor.author
 hal.structure.identifier
BELKYAL, I.
186562 Laboratoire de Minéralogie et Cosmochimie du Muséum [LMCM]
dc.contributor.authorIOST, Alain
dc.contributor.author
 hal.structure.identifier
MONTAGNE, Alex
211915 Mechanics surfaces and materials processing [MSMP]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2016
dc.date.submitted2017
dc.identifier.urihttp://hdl.handle.net/10985/11621
dc.description.abstractCarbon black (CB) filled semi-crystalline ethylene butyl acrylate (EBA) copolymer networks are investigated to probe for the CB particles dependence of the deformation behavior from nano-to micrometers length scales of samples which are submitted to nanoindentation characterization. With respect to this purpose, the phenomenology for hardness (H) response in these materials indicates a typical increase of the hardness by decreasing the indentation depth (h) similar to the observed behavior in elastomeric materials. This behavior can be related to the change of the mesostructure, formed by the heterogeneous three-dimensional interconnected network of polymer and of aggregates of CB particles. Furthermore, The CB amount is found to increase the resistance of composite under the action of a mechanical stress. The H-h curves were then compared to some analytical models and correlated to a tensile macroscopic behavior in order to highlight the involved deformation mechanisms with length scale. A complementary set of characterizations such as profilometry and atomic force microscopy probes were also employed to best understand of those mechanisms.
dc.language.isoen
dc.rightsPre-print
dc.subjectCarbon black
dc.subjectElastomer
dc.subjectNanoindentation
dc.subjectMulti-scale behavior
dc.titleNanoindentation hardness and macroscopic mechanical behaviors in filled elastomeric nanocomposites
dc.typdocCommunication sans acte
dc.localisationCentre de Lille
dc.subject.halPhysique: matière Condensée: Science des matériaux
ensam.audienceNon spécifiée
ensam.conference.titleIndentation 2016
ensam.conference.date2016-10
ensam.countryFrance
ensam.cityLille
ensam.peerReviewingOui
ensam.invitedCommunicationNon
ensam.proceedingNon
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record