Show simple item record

dc.contributor.author
 hal.structure.identifier
BARDY, Simon
119523 DAM Île-de-France [DAM/DIF]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
AUBERT, Bertrand
301287 DAM/CESTA
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
BERTHE, Laurent
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
COMBIS, Patrick
119523 DAM Île-de-France [DAM/DIF]
dc.contributor.author
 hal.structure.identifier
HEBERT, David
301287 DAM/CESTA
dc.contributor.author
 hal.structure.identifier
LESCOUTE, Emilien
119523 DAM Île-de-France [DAM/DIF]
dc.contributor.author
 hal.structure.identifier
RULLIER, Jean-Luc
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
VIDEAU, Laurent
119523 DAM Île-de-France [DAM/DIF]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn0091-3286
dc.identifier.urihttp://hdl.handle.net/10985/11658
dc.description.abstractIn order to control laser-induced shock processes, two main points of interest must be fully understood: the laser–matter interaction generating a pressure loading from a given laser intensity profile and the propagation of induced shock waves within the target. This work aims to build a predictive model for laser shock-wave experiments with two grades of aluminum at low to middle intensities (50 to 500  GW/cm 2 500  GW/cm2 ) using the hydrodynamic Esther code. This one-dimensional Lagrangian code manages both laser–matter interaction and shocks propagation. The numerical results are compared to recent experiments conducted on the transportable laser shocks generator facility. The results of this work motivate a discussion on the shock behavior dependence to elastoplasticity and fracturation models. Numerical results of the rear surface velocity show a good agreement with the experimental results, and it appears that the response of the material to the propagating shock is well predicted. The Esther code associated to this developed model can therefore be considered as a reliable predictive code for laser ablation and shock-wave experiments with pure aluminum and 6061 aluminum in the mentioned range of parameters. The pressure–intensity relationship generated by the Esther code is compared to previously established relationships.
dc.language.isoen
dc.publisherSPIE
dc.rightsPost-print
dc.titleNumerical study of laser ablation on aluminum for shock-wave applications: development of a suitable model by comparison with recent experiments
ensam.embargo.terms2017-07-01
dc.identifier.doi10.1117/1.OE.56.1.011014
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page1-20
ensam.journalOptical Engineering
ensam.volume56
ensam.peerReviewingOui
hal.identifierhal-01494304
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept
dc.identifier.eissn1560-2303


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record