Show simple item record

dc.contributor.author
 hal.structure.identifier
HEBERT, David
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
SEISSON, G
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
RULLIER, J.-L
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
BERTRON, I
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
HALLO, L
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
CHEVALIER, J.M
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.author
 hal.structure.identifier
THESSIEUX, C
21150 Centre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.authorGUILLET, F
dc.contributor.author
 hal.structure.identifier
BERTHE, Laurent
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn1364-503X
dc.identifier.urihttp://hdl.handle.net/10985/11735
dc.description.abstractWe present experiments and numerical simulations of hypervelocity impacts of 0.5 mm steel spheres into graphite, for velocities ranging between 1100 and 4500 m s−1. Experiments have evidenced that, after a particular striking velocity, depth of penetration no longer increases but decreases. Moreover, the projectile is observed to be trapped below the crater surface. Using numerical simulations, we show how this experimental result can be related to both materials, yield strength. A Johnson–Cook model is developed for the steel projectile, based on the literature data. A simple model is proposed for the graphite yield strength, including a piecewise pressure dependence of the Drucker–Prager form, which coefficients have been chosen to reproduce the projectile penetration depth. Comparisons between experiments and simulations are presented and discussed. The damage properties of both materials are also considered, by using a threshold on the first principal stress as a tensile failure criterion. An additional compressive failure model is also used for graphite when the equivalent strain reaches a maximum value. We show that the experimental crater diameter is directly related to the graphite spall strength. Uncertainties on the target yield stress and failure strength are estimated.
dc.language.isoen
dc.publisherRoyal Society, The
dc.rightsPost-print
dc.subjectgraphite
dc.subjectimpact
dc.subjectcratering
dc.subjectsteel
dc.subjectfragmentation
dc.subjectyield strength
dc.titleHypervelocity impacts into porous graphite: experiments and simulations
ensam.embargo.terms2017-06-29
dc.identifier.doi10.1098/rsta.2016.0171
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page1-16
ensam.journalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
ensam.volume375
ensam.peerReviewingOui
hal.statusunsent
dc.identifier.eissn1471-2962


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record