Show simple item record

dc.contributor.authorDENGUIR, Lamice
dc.contributor.authorOUTEIRO, José
dc.contributor.author
 hal.structure.identifier
VIGNAL, Vincent
103192 Laboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
dc.contributor.author
 hal.structure.identifier
BESNARD, Rémy
12062 VALDUC [DAM/VALDUC]
dc.contributor.author
 hal.structure.identifier
FROMENTIN, Guillaume
127742 Laboratoire Bourguignon des Matériaux et Procédés [LABOMAP]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn0924-0136
dc.identifier.urihttp://hdl.handle.net/10985/11796
dc.description.abstractDue to the rising interest in predicting machined surface integrity and sustainability, various models for metal cutting simulation have been developed. However, their accuracy depends deeply on the physical description of the machining process. This study aims to develop an orthogonal cutting model for surface integrity prediction, which includes a physical-based constitutive model of Oxygen Free High Conductivity (OFHC) copper. This constitutive model incorporates the effects of the state of stress and microstructure on the work material behavior, as well as a dislocation density-based model for surface integrity prediction. The coefficients of the constitutive model were identified through a hybrid experimental/numerical approach, consisting in mechanical tests, numerical simulations and an optimization-based algorithm. The orthogonal cutting model was simulated by FEM, using ALE formulation, and was validated by comparing predicted and measured results, including residual stresses, dislocation density and grain size. The model is then used to analyze the influence of the cutting parameters and cutting geometry on surface integrity, and its results are compared to those obtained by the Johnson-Cook model.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectConstitutive model
dc.subjectOHFC copper
dc.subjectorthogonal cutting
dc.subjectmodelling
dc.subjectsurface integrity
dc.titleA physical-based constitutive model for surface integrity prediction in machining of OFHC copper
dc.identifier.doi10.1016/j.jmatprotec.2017.05.009
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Cluny
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.pagexx
ensam.journalJournal of Materials Processing Technology
ensam.volumexx
ensam.issuexx
ensam.peerReviewingOui
hal.identifierhal-01683103
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record