Multi-scale experimental investigation of the viscous nature of damage in Advanced Sheet Molding Compound (A-SMC) submitted to high strain rates

DSpace Repository

Show simple item record

dc.contributor.author SHIRINBAYAN, Mohammadali
ensam.hal.laboratories
  86289 Procédés et Ingénierie en Mécanique et Matériaux [Paris] [PIMM]
dc.contributor.author FITOUSSI, Joseph
ensam.hal.laboratories
  86289 Procédés et Ingénierie en Mécanique et Matériaux [Paris] [PIMM]
dc.contributor.author BOCQUET, Michel
ensam.hal.laboratories
  86289 Procédés et Ingénierie en Mécanique et Matériaux [Paris] [PIMM]
dc.contributor.author MERAGHNI, Fodil
ensam.hal.laboratories
  178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author SUROWIEC, Benjamin
ensam.hal.laboratories
  497223 Plastic Omnium Auto Exterior [Sigmatech]
dc.contributor.author TCHARKHTCHI, Abbas
ensam.hal.laboratories
  86289 Procédés et Ingénierie en Mécanique et Matériaux [Paris] [PIMM]
dc.date.accessioned 2017-06-16T10:42:45Z
dc.date.issued 2017
dc.date.submitted 2016-11-24T11:13:44Z
dc.identifier.issn 1359-8368
dc.identifier.uri http://hdl.handle.net/10985/11854
dc.description.abstract This paper aims to present an experimental multi-scale analysis of quasi-static and high strain rate damage behavior of a new formulation of SMC composite (Advanced SMC). In order to study its capability to absorb energy through damage accumulation, Randomly Oriented (RO) and High oriented (HO) A-SMC composites damage has been investigated at both microscopic and macroscopic scales. A specific device has been developed in order to perform Interrupted Dynamic Tensile Tests (IDTT) which allows analyzing the evolution of the microscopic damage mechanisms occurring during rapid tensile tests. Several damage micro-mechanisms have been pointed out. The relative influences of these micro-damage events and their interactions have been related to the macroscopic damage behavior through the definition of microscopic and macroscopic damage indicators. Damage threshold and kinetic have been quantified at various strain rate for different microstructures and loading cases (RO, HO-0 and HO-90). It has been shown at both scales that increasing strain rate leads to an onset of damage initiation together with a reduction of the damage accumulation kinetic. Moreover, the influence of the fiber orientation has been studied in order to emphasize the anisotropic strain rate effect at the fiber-matrix interface scale. The latter was related to the influence of the microstructure of A-SMC composites. Finally, on the basis of the whole experimental results, the microscopic origin of the viscous nature of the damage behavior of A-SMCs composites have been discussed and related to the influence of the strain rate and microstructure. en
dc.language.iso en
dc.publisher ELSEVIER
dc.rights Post-print
dc.subject Microstructure en
dc.subject Damage en
dc.subject Multi-scale analysis en
dc.title Multi-scale experimental investigation of the viscous nature of damage in Advanced Sheet Molding Compound (A-SMC) submitted to high strain rates en
ensam.hal.id hal-01540457 *
ensam.hal.status update *
ensam.embargo.terms 2017-10
ensam.embargo.lift 2017-10
dc.identifier.doi 10.1016/j.compositesb.2016.10.061
dc.typdoc Articles dans des revues avec comité de lecture
dc.localisation Centre de Metz
dc.subject.hal Sciences de l'ingénieur: Matériaux
dc.subject.hal Sciences de l'ingénieur: Mécanique
dc.subject.hal Sciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.hal Sciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audience Internationale
ensam.page 3-13
ensam.journal Composites Part B
ensam.volume 115
ensam.peerReviewing Oui

Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Search



Advanced Search

Number of documents in SAM

  • 2601 references in SAM

My Account

Reporting Suite

Help