Show simple item record

dc.contributor.author
 hal.structure.identifier
DENGUIR, Lamice
496957 Laboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
dc.contributor.authorOUTEIRO, José
dc.contributor.author
 hal.structure.identifier
RECH, Joël
698 Laboratoire de Tribologie et Dynamique des Systèmes [LTDS]
dc.contributor.author
 hal.structure.identifier
VIGNAL, Vincent
496957 Laboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
dc.contributor.author
 hal.structure.identifier
BESNARD, Rémy
300016 Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
dc.contributor.author
 hal.structure.identifier
FROMENTIN, Guillaume
127742 Laboratoire Bourguignon des Matériaux et Procédés [LABOMAP]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn2212-8271
dc.identifier.urihttp://hdl.handle.net/10985/11878
dc.description.abstractTribological behavior at both tool/chip and tool/work material interfaces should be highly considered while simulating the machining process. In fact, it is no longer accurate to suppose one independent constant friction coefficient at the tool/chip interface, since in reality it depends on the applied contact conditions, including the sliding velocity and pressure. The contact conditions at both above mentioned interfaces may affect the thermal and mechanical phenomena and consequently the surface integrity predictions. In this article, the influence of contact conditions (sliding velocity) on the tribological behavior of uncoated tungsten carbide tool against OFHC copper work material was investigated. Series of tribology tests combined with numerical simulations of the contact process were performed under different sliding speeds and contact pressures, in order to identify the friction coefficient and the heat partition between OFHC copper and tungsten carbide. The friction coefficient in function of the sliding velocity was then integrated into a FE model of the orthogonal cutting of OFHC copper and applied to surface integrity prediction.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectfriction modeling
dc.subjecttribology tests
dc.subjectcutting simulation
dc.subjectcarbide tool
dc.subjectOFHC copper
dc.titleFriction Model for Tool/Work Material Contact Applied to Surface Integrity Prediction in Orthogonal Cutting Simulation
dc.identifier.doi10.1016/j.procir.2017.03.229
dc.typdocCommunication avec acte
dc.localisationCentre de Cluny
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.conference.title16th CIRP CMMO
ensam.conference.date2017-06-16
ensam.countryFrance
ensam.title.proceedingProcedia CIRP
ensam.page578-583
ensam.volume58
ensam.cityCluny
ensam.peerReviewingOui
ensam.invitedCommunicationOui
ensam.proceedingOui
hal.submission.permittedtrue
hal.statusunsent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record