Show simple item record

dc.contributor.author
 hal.structure.identifier
VERGARI, Claudio
99538 Laboratoire de biomécanique [LBM]
dc.contributor.author
 hal.structure.identifier
COURTOIS, Isabelle
99538 Laboratoire de biomécanique [LBM]
dc.contributor.author
 hal.structure.identifier
EBERMEYER, Eric
99538 Laboratoire de biomécanique [LBM]
dc.contributor.author
 hal.structure.identifier
VIALLE, Raphaël
188248 Université Grenoble Alpes - UFR Langage, lettres et arts du spectacle, information et communication - Dpt Lettres et arts du spectacle [UGA UFR LLASIC LAS]
dc.contributor.author
 hal.structure.identifier
BOULOUSSA, Houssam
99538 Laboratoire de biomécanique [LBM]
dc.contributor.author
 hal.structure.identifier
SKALLI, Wafa
99538 Laboratoire de biomécanique [LBM]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2016
dc.date.submitted2017
dc.identifier.issn0940-6719
dc.identifier.urihttp://hdl.handle.net/10985/11887
dc.description.abstractPurpose Personalized modeling of brace action have potential in improving brace efficacy in adolescent idiopathic scoliosis (AIS). Model validation and simulation uncertainty are rarely addressed, limiting the clinical implementation of personalized models. We hypothesized that a thorough validation of a personalized finite element model (FEM) of brace action would highlight potential means of improving the model. Methods 42 AIS patients were included retrospectively and prospectively. Personalized FEMs of pelvis, spine and ribcage were built from stereoradiographies. Brace action was simulated through soft cylindrical pads acting on the ribcage and through displacements applied to key vertebrae. Simulation root mean squared errors (RMSEs) were calculated by comparison with the actual brace action (quantified through clinical indices, vertebral positions and orientations) observed in in-brace stereoradiographies. Results Simulation RMSEs of Cobb angle and vertebral apical axial rotation was lower than measurement uncertainty in 79% of the patients. Pooling all patients and clinical indices, 87 % of the indices had lower RMSEs than the measurement uncertainty. Conclusions In-depth analysis suggests that personalization of spinal functional units mechanical properties could improve the simulation’s accuracy, but the model gave good results, thus justifying further research on its clinical application.
dc.description.sponsorshipThe authors are grateful to the ParisTech BiomecAM chair program on subject-specific musculoskeletal modelling (with the support of ParisTech and Yves Cotrel Foundations, Société Générale, Proteor and Covea) and to the “Investissements d'Avenir” program for funding the CORSIN Project, in collaboration between Proteor and our institution. We would also like to thank Ms Sonia Simoes for her technical help.
dc.language.isoen
dc.publisherSpringer Verlag
dc.rightsPost-print
dc.subjectFinite element model; Spine deformity; Brace; Pediatrics
dc.titleExperimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis
dc.identifier.doi10.1007/s00586-016-4511-7
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Biomécanique
dc.subject.halSciences du vivant: ingénierie bio-médicale
ensam.audienceInternationale
ensam.page3049–3055
ensam.journalEuropean Spine Journal
ensam.volume25
ensam.issue10
ensam.peerReviewingOui
hal.identifierhal-01551697
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept
dc.identifier.eissn1432-0932


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record