Show simple item record

dc.contributor.author
 hal.structure.identifier
AGNAOU, Mehrez
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.author
 hal.structure.identifier
LASSEUX, Didier
164351 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.author
 hal.structure.identifier
AHMADI-SENICHAULT, Azita
17163 Transferts, écoulements, fluides, énergétique [TREFLE]
dc.date.accessioned2017
dc.date.available2017
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn2470-0045
dc.identifier.urihttp://hdl.handle.net/10985/12154
dc.description.abstractInertial flow in porous media occurs in many situations of practical relevance among which one can cite flows in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a deviation from Darcy’s law that leads to a nonlinear relationship between the pressure drop and the filtration velocity. In this work, this deviation, also known as the nonlinear, inertial, correction to Darcy’s law, which is subject to controversy upon its origin and dependence on the filtration velocity, is studied through numerical simulations. First, the microscopic flow problem was solved computationally for a wide range of Reynolds numbers up to the limit of steady flow within ordered and disordered porous structures. In a second step, the macroscopic characteristics of the porous medium and flow (permeability and inertial correction tensors) that appear in the macroscale model were computed. From these results, different flow regimes were identified: (1) the weak inertia regime where the inertial correction has a cubic dependence on the filtration velocity and (2) the strong inertia (Forchheimer) regime where the inertial correction depends on the square of the filtration velocity. However, the existence and origin of those regimes, which depend also on the microstructure and flow orientation, are still not well understood in terms of their physical interpretations, as many causes have been conjectured in the literature. In the present study, we provide an in-depth analysis of the flow structure to identify the origin of the deviation from Darcy’s law. For accuracy and clarity purposes, this is carried out on two-dimensional structures. Unlike the previous studies reported in the literature, where the origin of inertial effects is often identified on a heuristic basis, a theoretical ustification is presented in this work. Indeed, a decomposition of the convective inertial term into two components is carried out formally allowing the identification of a correlation between the flow structure and the different inertial regimes. These components correspond to the curvature of the flow streamlines weighted by the local fluid kinetic energy on the one hand and the distribution of the kinetic energy along these lines on the other hand. In addition, the role of the recirculation zones in the occurrence and in the form of the deviation from Darcy’s law was thoroughly analyzed. For the porous structures under consideration, it is shown that (1) the kinetic energy lost in the vortices is insignificant even at high filtration velocities and (2) the shape of the flow streamlines induced by the recirculation zones plays an important role in the variation of the flow structure, which is correlated itself to the different flow regimes.
dc.language.isoen
dc.publisherAmerican Physical Society (APS)
dc.rightsPost-print
dc.subjectflow porous media
dc.titleOrigin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures
dc.identifier.doi10.1103/PhysRevE.96.043105
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Bordeaux-Talence
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des fluides
ensam.audienceNon spécifiée
ensam.page043105
ensam.journalPhysical Review E
ensam.volume96
ensam.peerReviewingOui
hal.statusunsent
dc.identifier.eissn2470-0053


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record