Show simple item record

dc.contributor.author
 hal.structure.identifier
GU, TANG
1157 Centre des Matériaux [CDM]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
CASTELNAU, Olivier
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
HERVE-LUANCO, E.
1157 Centre des Matériaux [CDM]
81173 Université de Versailles Saint-Quentin-en-Yvelines [UVSQ]
dc.contributor.author
 hal.structure.identifier
LECOUTURIER, F
95858 Laboratoire national des champs magnétiques intenses - Toulouse [LNCMI-T]
dc.contributor.author
 hal.structure.identifier
PROUDHON, H
1157 Centre des Matériaux [CDM]
dc.contributor.author
 hal.structure.identifier
THILLY, L
118112 Institut Pprime [UPR 3346] [PPrime [Poitiers]]
dc.date.accessioned2017
dc.date.available2018
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn0020-7683
dc.identifier.urihttp://hdl.handle.net/10985/12174
dc.description.abstractNanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (> 90T) as they combine both high strength and high electrical conductivity. Multi-scaled Cu–Nb wires are fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured, and nanostructured microstructure exhibiting a strong fiber crystallographic texture and elongated grain shapes along the wire axis. This paper presents a comprehensive study of the effective elastic behavior of this composite material by three multi-scale models accounting for different microstructural contents: two mean-field models and a full-field finite element model. As the specimens exhibit many characteristic scales, several scale transition steps are carried out iteratively from the grain scale to the macro-scale. The general agreement among the model responses allows suggesting the best strategy to estimate the effective behavior of Cu–Nb wires and save computational time. The importance of crystallographical and morphological textures in various cases is discussed. Finally, the models are validated by available experimental data with a good agreement.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectMultiscale modeling
dc.subjectArchitectured material
dc.subjectPolycrystalline material
dc.subjectNanostructure
dc.subjectElasticity
dc.subjectHomogenization scheme
dc.subjectFinite element modeling
dc.subjectCopper niobium composite
dc.titleMultiscale modeling of the elastic behavior of architectured and nanostructured Cu–Nb composite wires
ensam.embargo.terms2018-03-31
dc.identifier.doi10.1016/j.ijsolstr.2017.05.022
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page148-162
ensam.journalInternational Journal of Solids and Structures
ensam.volume121
ensam.peerReviewingOui
hal.identifierhal-01638339
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record