Afficher la notice abrégée

dc.contributor.authorSHIRINBAYAN, Mohammadali
dc.contributor.authorABBASNEZHAD, Navideh
dc.contributor.author
 hal.structure.identifier
SUROWIEC, Benjamin
497223 Plastic Omnium Auto Exterior [Sigmatech]
dc.contributor.author
 hal.structure.identifier
TCHARKHTCHI, Abbas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorFITOUSSI, Joseph
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2017
dc.date.available2018
dc.date.issued2017
dc.date.submitted2017
dc.identifier.issn1359-8368
dc.identifier.urihttp://hdl.handle.net/10985/12296
dc.description.abstractThis paper presents the results of an overall experimental characterization of the mechanical behavior of a Low Density Sheet Molding Compound (LD-SMC). LD-SMC is a polyester matrix containing mineral charge (CaCO3) reinforced by discontinuous bundles of glass fibers and Hollow Glass Microspheres (HGM). After a description of its specific microstructure using several experimental methods (notably a new ultrasonic method), the overall mechanical response of two microstructure configurations (Randomly Oriented (RO) and Highly oriented (HO)) is analyzed at both macroscopic and microscopic scales in the case of tensile and compression tests. HGMs are homogeneously distributed into the overall volume of the material. At the microscopic scale, in-situ tensile tests inside a SEM and fracture surfaces observations allows analyzing the specific damage mechanisms occurring during tensile and compression loading performed in the mold flow direction (HO-0°) and perpendicularly to it (HO-90°). A strong coupled influence of the presence of the HGM and fibers orientation has been emphasized. The results show that for HO-0° configuration fiber-matrix debonding appears to be the predominant damage mechanism, whereas for HO-90° configuration HGM-matrix debonding appears to be the predominant damage mechanism. High speed tensile tests are achieved using servo-hydraulic test equipment in order to study the strain rate effects (until 80 s−1) on mechanical macroscopic responses of HO-0°, RO and HO-90° samples. Strain rate has an obvious influence on the inelastic properties of LD-SMCs samples for all microstructures particularly on the damage threshold.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHollow glass microspheres
dc.subjectLow density SMC
dc.subjectDamage
dc.subjectStrain rate effect
dc.titleMechanical characterization of a Low Density Sheet Molding Compound (LD-SMC): Multi-scale damage analysis and strain rate effect
dc.identifier.doi10.1016/j.compositesb.2017.08.004
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page8-20
ensam.journalComposites Part B: Engineering
ensam.volume131
ensam.peerReviewingOui
hal.identifierhal-03269913
hal.version1
hal.date.transferred2021-06-24T11:59:58Z
hal.submission.permittedTrue
hal.statusaccept
dc.identifier.eissn1879-1069


Fichier(s) constituant cette publication

Thumbnail

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée