Show simple item record

dc.contributor.author
 hal.structure.identifier
GU, TANG
1157 Centre des Matériaux [CDM]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
MEDY, J.-R
118112 Institut Pprime [UPR 3346] [PPrime [Poitiers]]
dc.contributor.author
 hal.structure.identifier
VOLPI, F
32956 Science et Ingénierie des Matériaux et Procédés [SIMaP]
dc.contributor.author
 hal.structure.identifier
CASTELNAU, Olivier
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
FOREST, S
1157 Centre des Matériaux [CDM]
dc.contributor.author
 hal.structure.identifier
HERVE-LUANCO, E.
81173 Université de Versailles Saint-Quentin-en-Yvelines [UVSQ]
1157 Centre des Matériaux [CDM]
dc.contributor.author
 hal.structure.identifier
LECOUTURIER, F
95858 Laboratoire national des champs magnétiques intenses - Toulouse [LNCMI-T]
dc.contributor.author
 hal.structure.identifier
PROUDHON, H
1157 Centre des Matériaux [CDM]
dc.contributor.author
 hal.structure.identifier
RENAULT, P.-O
118112 Institut Pprime [UPR 3346] [PPrime [Poitiers]]
dc.contributor.author
 hal.structure.identifier
THILLY, L
95858 Laboratoire national des champs magnétiques intenses - Toulouse [LNCMI-T]
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2017
dc.date.submitted2017
dc.date.submitted2018
dc.identifier.issn1359-6454
dc.identifier.urihttp://hdl.handle.net/10985/12554
dc.description.abstractNanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (> 90T) as they combine both high electrical conductivity and high strength. Multi-scaled Cu-Nb wires can be fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured and nanostructured microstructure providing a unique set of properties. This work presents a comprehensive multiscale study to predict the anisotropic effective electrical conductivity based on material nanostructure and architecture. Two homogenization methods are applied: a mean-field theory and a full-field approach. The size effect associated with the microstructure refinement is taken into account in the definition of the conductivity of each component in the composites. The multiscale character of the material is then accounted for through an iterative process. Both methods show excellent agreement with each other. The results are further compared, for the first time, with experimental data obtained by the four-point probe technique, and also show excellent agreement. Finally, the qualitative and quantitative understanding provided by these models demonstrates that the microstructure of Cu-Nb wires has a significant effect on the electrical conductivity
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectArchitectured material
dc.subjectElectrical conductivity
dc.subjectSize effect
dc.subjectMultiscale modeling
dc.subjectCopper niobium composite
dc.titleMultiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured Cu-Nb composite wires and experimental comparison
ensam.embargo.terms2018-06-30
dc.identifier.doi10.1016/j.actamat.2017.08.066
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page131-141
ensam.journalActa Materialia
ensam.volume141
ensam.peerReviewingOui
hal.identifierhal-01633968
hal.version1
hal.date.transferred2019-05-22T07:48:44Z
hal.submission.permittedtrue
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record