Show simple item record

dc.contributor.authorCHEMISKY, Yves
dc.contributor.author
 hal.structure.identifier
HARTL, Darren
301080 Texas A&M University [College Station]
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2018
dc.date.submitted2018
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/12916
dc.description.abstractA three-dimensional constitutive model is developed that describes the behavior of shape memory alloy actuators undergoing a large number of cycles leading to the development of internal damage and eventual catastrophic failure. Physical mechanisms such as transformation strain generation and recovery, transformation-induced plasticity, and fatigue damage associated with martensitic phase transformation occurring during cyclic loading are all considered within a thermodynamically consistent framework. Fatigue damage in particular is described utilizing a continuum theory of damage. The total damage growth rate has been formulated as a function of the current stress state and the rate of martensitic transformation such that the magnitude of recoverable transformation strain and the complete or partial nature of the transformation cycles impact the total cyclic life as per experimental observations. Simulation results from the model developed are compared to uniaxial actuation fatigue tests at different applied stress levels. It is shown that both lifetime and the evolution of irrecoverable strain are accurately predicted by the developed model.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectshape memory alloys
dc.subjectfunctional fatigue
dc.subjectactuators
dc.titleThree-dimensional constitutive model for structural and functional fatigue of shape memory alloy actuators
dc.identifier.doi10.1016/j.ijfatigue.2018.03.016
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.page263-278
ensam.journalInternational Journal of Fatigue
ensam.volume112
ensam.peerReviewingOui
hal.identifierhal-01762224
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record