Show simple item record

dc.contributor.author
 hal.structure.identifier
TIKARROUCHINE, El-Hadi
242513 École Militaire Polytechnique [Alger] [EMP]
dc.contributor.authorCHATZIGEORGIOU, George
dc.contributor.authorPIOTROWSKI, Boris
dc.contributor.authorCHEMISKY, Yves
dc.contributor.author
 hal.structure.identifier
PRAUD, Francis
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorMERAGHNI, Fodil
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2018
dc.date.submitted2018
dc.identifier.issn0263-8223
dc.identifier.urihttp://hdl.handle.net/10985/12935
dc.description.abstractIn this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The sensitivity to the strain rate requires an homogenization scheme to bridge the scales between the macroscopic boundary conditions applied and the local evaluation of the strain rate. In the present work, the effective response of composite materials where the matrix has a local elasto-viscoplastic behavior with ductile damage are analyzed using periodic homogenization, solving simultaneously finite element problems at the microscopic scale (unit cell) and at the macroscopic scale. This approach can integrate any kind of periodic microstructure with any type of non-linear behavior for the constituents (without the consideration of non-linear geometric effects), allowing to treat complex mechanisms that can occur in every phase and at their interface. The numerical implementation of this simulation strategy has been performed with a parallel computational technique in ABAQUS/Standard,with the implementation of a set of dedicated scripts. The homogenization process is performed using a user-defined constitutive law that solve a set full-field non-linear simulations of a Unit Cell and perform the necessary homogenization of the mechanical quantities. The effectiveness of the method is demonstrated with three examples of 3D composite structures with plastic or viscoplastic and ductile damage matrix. In the first example, the numerical results obtained by this full field approach are compared with a semi-analytical solution on elastoplastic multilayer composite structure. The second example investigates the macroscopic response of a complex viscoplastic composite structure with ductile damage and is compared with the mean field Mori-Tanaka method. Finally, 3D corner structure consisting of periodically aligned short fibres composite is analysed under complex loading path. These numerical simulations illustrate the capabilities of the FE2 strategy under non-linear regime, when time dependent constitutive models describe the response of the constituents
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectMulti-scale finite element computation
dc.subjectFE2 method
dc.subjectperiodic homogenization
dc.subjectcomposite materials
dc.subjectelastoviscoplastic behavior
dc.subjectductile damage
dc.titleThree-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures
dc.identifier.doi10.1016/j.compstruct.2018.03.072
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.page165-179
ensam.journalComposite Structures
ensam.volume193
ensam.peerReviewingOui
hal.identifierhal-01762458
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record