Show simple item record

dc.contributor.authorBEN BETTAIEB, Mohamed
dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid 
243747 Labex DAMAS
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2019
dc.date.submitted2018
dc.identifier.issn1960-6206
dc.identifier.urihttp://hdl.handle.net/10985/13135
dc.description.abstractIn several modern technological applications, the formability of functional metal components is often limited by the occurrence of localized necking. To retard the onset of such undesirable plastic instabilities and, hence, to improve formability, elastomer substrates are sometimes adhered to these metal components. The current paper aims to numerically investigate the impact of such elastomer substrates on the formability enhancement of the resulting bilayer. To this end, both the bifurcation theory and the initial imperfection approach are used to predict the inception of localized necking in substrate-supported metal layers. The fullconstraint Taylor scale-transition scheme is used to derive the mechanical behavior of a representative volume element of the metal layer from the behavior of its microscopic constituents (the single crystals). The mechanical behavior of the elastomer substrate follows the neo-Hookean hyperelastic model. The adherence between the two layers is assumed to be perfect. Through numerical simulations, it is shown that bonding an elastomer layer to a metal layer allows significant enhancement in formability, especially in the negative range of strain paths. These results highlight the benefits of adding elastomer substrates to thin metal components in several technological applications. Also, it is shown that the limit strains predicted by the initial imperfection approach tend towards the bifurcation predictions as the size of the geometric imperfection in the metal layer reduces.
dc.language.isoen
dc.publisherSpringer Verlag
dc.rightsPost-print
dc.subjectSubstrate-supported metal layers
dc.subjectForming limit diagrams
dc.subjectLocalized necking
dc.subjectNeo-Hookean model
dc.subjectRate-independent crystal plasticity
dc.subjectBifurcation and imperfection analyses
dc.titleDuctility prediction of substrate-supported metal layers based on rate-independent crystal plasticity theory
ensam.embargo.terms2018-07
dc.identifier.doi10.1007/s12289-018-1401-z
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.page241-255
ensam.journalInternational Journal of Material Forming
ensam.volume12
ensam.issue2
ensam.peerReviewingOui
hal.identifierhal-01794116
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept
dc.identifier.eissn1960-6214


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record