Show simple item record

dc.contributor.author
 hal.structure.identifier
CAUVIN, Ludovic
93027 Université de Technologie de Compiègne [UTC]
dc.contributor.author
 hal.structure.identifier
RAGHAVAN, Balaji
25157 Laboratoire de Génie Civil et Génie Mécanique [LGCGM]
dc.contributor.author
 hal.structure.identifier
BOUVIER, Salima
93027 Université de Technologie de Compiègne [UTC]
dc.contributor.author
 hal.structure.identifier
WANG, Xiaodong
93027 Université de Technologie de Compiègne [UTC]
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2018
dc.date.submitted2018
dc.identifier.issn0921-5093
dc.identifier.urihttp://hdl.handle.net/10985/13176
dc.description.abstractZinc and its alloys are important industrial materials due to their high corrosion resistance, low cost and good ductility. However, the characterization of these materials remains a difficult task due to their highly anisotropic behavior, the latter being due to the influence of microstructural effects, i.e. loading orientation-dependent activation of different families of slip systems and subsequent texture evolution, rendering the development of a reliable material model considerably difficult. A micro-mechanical approach based on polycrystal plasticity would better describe the physical mechanisms underlying the macroscopic behavior. This improved model should ostensibly improve the comprehension of the mechanical behavior, compared to the macroscopic approach using solely phenomenological anisotropy models along with a prohibitively large number of experiments required to identify the material parameters. In this paper, a multi-scale Visco-Plastic Self-Consistent (VPSC) approach is used. It is based on a micro-scale model calibrated by microstructural and deformation mechanism information based on Electron Back-Scattered Diffraction (EBSD) to describe the macroscopic anisotropic mechanical response during sheet metal deformation. The critical resolved shear stress (CRSS) as well as the micro-scale crystal parameters are obtained by an inverse analysis comparing the simulated and experimental results in terms of obtained tensile curves along three different directions. In order to obtain a global solution for the identification, we then use the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) genetic algorithm to the inverse problem. We validate our approach by comparing the simulated and experimental textures and activated slip systems. Finally, the identified mechanical parameters are used to investigate the anisotropy of the alloy and predict its formability by determining the corresponding R-values and Hill yield coefficients.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectZinc alloys
dc.subjectPlasticity
dc.subjectCharacterization
dc.subjectCritical resolved shear stresses
dc.subjectAnisotropy
dc.subjectViscoplastic self-consistent
dc.subjectMetal forming
dc.titleMulti-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis
dc.identifier.doi10.1016/j.msea.2018.05.038
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.page106-118
ensam.journalMaterials Science and Engineering: A
ensam.volume729
ensam.peerReviewingOui
hal.identifierhal-01797288
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record