Hierarchical micromechanical modeling of the viscoelastic behavior coupled to damage in SMC and SMC-hybrid composites

DSpace Repository

Show simple item record

dc.contributor.author ANAGNOSTOU, Dimitrios
ensam.hal.laboratories
  178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author CHATZIGEORGIOU, George
ensam.hal.laboratories
  178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author CHEMISKY, Yves
ensam.hal.laboratories
  178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author MERAGHNI, Fodil
ensam.hal.laboratories
  178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned 2018-06-11T14:48:49Z
dc.date.available 2018-06-11T14:48:49Z
dc.date.issued 2018
dc.date.submitted 2018-06-06T15:32:40Z
dc.identifier.issn 1359-8368
dc.identifier.uri http://hdl.handle.net/10985/13236
dc.description.abstract The aim of this paper is to study, through a multiscale analysis, the viscoelastic behavior of glass reinforced sheet molding compound (SMC) composites and SMC-hybrid composites mixing two types of bundle reinforcement: glass and carbon fibers. SMC exhibit more than two distinct characteristic length scales, so that a sequence of scale transitions is required to obtain the overall behavior of the composite. An analytical procedure is used consisting of properly selected well-established micromechanical methods like the Mori-Tanaka (MTM) and the composite cylinders (CCM) accounting for each scale transition. After selecting a representative volume element (RVE) for each scale, the material response of any given length scale is described on the basis of the homogenized behavior of the next finer one. This hierarchical approach is appropriately extended to the viscoelastic domain to account for the time dependent overall response of the SMC composite material. The anisotropic damage has been introduced through a micromechanical model considering matrix penny-shape microcrack density inside bundles. The capabilities of the hierarchical modeling are illustrated with various parametric studies and simulation of experimental data for glass-based SMC composites. en
dc.language.iso en
dc.publisher ELSEVIER
dc.rights Post-print
dc.subject Micromechanics en
dc.subject Viscoelasticity en
dc.subject Inclusion Method en
dc.subject Multiscale Modeling en
dc.subject Micro-cracks en
dc.title Hierarchical micromechanical modeling of the viscoelastic behavior coupled to damage in SMC and SMC-hybrid composites en
ensam.hal.id hal-01812711 *
ensam.hal.status accept *
dc.identifier.doi 10.1016/j.compositesb.2018.05.053
dc.typdoc Articles dans des revues avec comité de lecture
dc.localisation Centre de Metz
dc.subject.hal Sciences de l'ingénieur: Matériaux
dc.subject.hal Sciences de l'ingénieur: Mécanique
dc.subject.hal Sciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.hal Sciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.hal Sciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audience Internationale
ensam.page in press
ensam.journal Composites Part B: Engineering
ensam.peerReviewing Oui

Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Search


Number of documents in SAM

  • 2890 references in SAM

Newsletter

My Account

Reporting Suite

Help