Show simple item record

dc.contributor.author
 hal.structure.identifier
HADJEM-HAMOUCHE, Z.
93516 Centre d'enseignement Cnam Paris [CNAM Paris]
dc.contributor.author
 hal.structure.identifier
HÉRIPRÉ, E.
1167 Laboratoire de mécanique des solides [LMS]
dc.contributor.author
 hal.structure.identifier
CHEVALIER, Jean-Pierre
93516 Centre d'enseignement Cnam Paris [CNAM Paris]
dc.contributor.author
 hal.structure.identifier
DERRIEN, Katell
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.date.accessioned2018
dc.date.issued2018
dc.date.submitted2018
dc.identifier.issn0921-5093
dc.identifier.urihttp://hdl.handle.net/10985/13283
dc.description.abstractA joint experimental and modelling study of plastic strain and ensuing damage in a novel metal matrix composite (Fe-TiB2) is presented. Damage is observed and quantified using SEM images processing and Acoustic Emission (AE) analysis. The use of AE confirms that the surface damage observed is strongly correlated to damage in the bulk of the material. The primary mode of damage is particle fracture. Very little particle decohesion is observed, indicating an exceptionally good cohesion of the steel/particle interface. Damage is initiated soon after the composite yield point is reached and increases significantly with strain. Macroscopic failure of the tensile specimen occurs when about 25% of the particles are fractured. This corresponds to about 21% engineering strain. Using in-situ SEM tensile tests with quantitative digital image correlation (DIC), full-field strain measurements are obtained and particle fracture quantified. The results of fields measurements are compared to results of a FFT based homogenization method with boundary conditions retrieved from the experiment. A good agreement is found between the DIC-measured and FFT-predicted results. Estimated values of the particle fracture stress are obtained.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectMetal matrix composite Fe–TiB2
dc.subjectDamage
dc.subjectIn-situ
dc.subjectDIC
dc.subjectAE
dc.subjectFFT
dc.subjectHomogenization
dc.titleIn-situ experimental and numerical studies of the damage evolution and fracture in a Fe-TiB2 composite
ensam.embargo.terms2018-11-30
ensam.embargo.lift2018-11-30
dc.identifier.doi10.1016/j.msea.2018.03.108
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page594-605.
ensam.journalMaterials Science and Engineering: A
ensam.volume724
ensam.peerReviewingOui
hal.identifierhal-01825611
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record