Show simple item record

dc.contributor.authorLARIBI, Mohamad-Amine
dc.contributor.author
 hal.structure.identifier
TAMBOURA, Sahbi
320873 Ecole Nationale d'Ingénieurs de Sousse [ENISo]
dc.contributor.author
 hal.structure.identifier
BEN DALI, Hachmi
320873 Ecole Nationale d'Ingénieurs de Sousse [ENISo]
dc.contributor.author
 hal.structure.identifier
TCHARKHTCHI, Abbas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorFITOUSSI, Joseph
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2018
dc.date.submitted2018
dc.identifier.issn1359-8368
dc.identifier.urihttp://hdl.handle.net/10985/13302
dc.description.abstractIndustrial design of Short Fiber Reinforced Composites (SFRC) structures is subject to several compounding and processing steps of optimization. Moreover, these structures are often submitted to fatigue loading. Therefore, SN curves have to be established for each new composite formulation and for several type of microstructure involved in the real component due to processing. While these preliminary characterizations are time and money consuming, this paper propose a new hybrid methodology for fast fatigue life prediction. Moreover, both monotonic and fatigue behavior of SMC composites is essentially determined by local damage propagation. Therefore, the key idea of the proposed approach is to use a Mori and Tanaka based micromechanical model in order to establish an equation of state relating local damage rate to macroscopic residual stiffness rate. The generalization of this relation to fatigue damage multi-scale description leads to the SN curve fast determination of each considered microstructure. Very limited experimental characterization is required in such a way that SN curve could be established in just one day. Comparison between experimental and simulated Whöler curves highlights a very good agreement for several microstructure configurations in the case of a SMC composite material.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectFiber reinforced composite
dc.subjectDamage-mechanics
dc.subjectMicro-mechanics
dc.subjectFatigue life prediction
dc.titleFast fatigue life prediction of short fiber reinforced composites using a new hybrid damage approach: Application to SMC
ensam.embargo.terms2018-11
ensam.embargo.lift2018-11
dc.identifier.doi10.1016/j.compositesb.2017.11.063
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
ensam.audienceInternationale
ensam.page155-162.
ensam.journalComposites Part B: Engineering
ensam.volume139
ensam.peerReviewingOui
hal.identifierhal-01826582
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept
dc.identifier.eissn1879-1069


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record