Show simple item record

dc.contributor.author
 hal.structure.identifier
SCHEUER, Adrien
197411 Institute of Information and Communication Technologies, Electronics and Applied Mathematics [ICTEAM]
dc.contributor.author
 hal.structure.identifier
CHINESTA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
KEUNINGS, Roland
92863 Université Catholique de Louvain = Catholic University of Louvain [UCL]
dc.contributor.author
 hal.structure.identifier
ABISSET-CHAVANNE, Emmanuelle
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2018
dc.date.submitted2018
dc.identifier.issn1631-0721
dc.identifier.urihttp://hdl.handle.net/10985/13304
dc.description.abstractThe properties of reinforced polymers strongly depend on the microstructural state, that is, the orientation state of the fibres suspended in the polymeric matrix, induced by the forming process. Understanding flow-induced anisotropy is thus a key element to optimize both materials and process. Despite the important progresses accomplished in the modelling and simulation of suspensions, few works addressed the fact that usual processing flows evolve in confined configurations, where particles characteristic lengths may be greater than the thickness of the narrow gaps in which the flow takes place. In those circumstances, orientation kinematics models proposed for unconfined flows must be extended to the confined case. In this short communication, we propose an alternative modelling framework based on the use of unilateral mechanics, consequently exhibiting a clear analogy with plasticity and contact mechanics. This framework allows us to revisit the motion of confined particles in Newtonian and non-Newtonian matrices. We also prove that the confined kinematics provided by this model are identical to those derived from microstructural approaches
dc.language.isoen
dc.publisherElsevier Masson
dc.rightsPost-print
dc.subjectFibre suspensions
dc.subjectJeffery’s equation
dc.subjectConfinement
dc.titleMicroscopic modelling of orientation kinematics of non-spherical particles suspended in confined flows using unilateral mechanics
ensam.embargo.terms2018-06-30
dc.identifier.doi10.1016/j.crme.2017.11.003
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page48-56
ensam.journalComptes Rendus Mécanique
ensam.volume346
ensam.peerReviewingOui
hal.identifierhal-01826639
hal.version1
hal.submission.permittedupdateFiles
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record