Show simple item record

dc.contributor.authorFLIELLER, Damien
dc.contributor.author
 hal.structure.identifier
WIRA, Patrick
25826 Modélisation, Intelligence, Processus et Système [MIPS]
dc.contributor.authorSTURTZER, Guy
dc.contributor.author
 hal.structure.identifier
OULD ABDESLAM, Djaffar
25826 Modélisation, Intelligence, Processus et Système [MIPS]
dc.contributor.author
 hal.structure.identifier
MERCKLE, Jean
25826 Modélisation, Intelligence, Processus et Système [MIPS]
dc.contributor.author
 hal.structure.identifier
NGUYEN, Ngac Ky
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
dc.date.accessioned2013
dc.date.available2013
dc.date.issued2013
dc.date.submitted2013
dc.identifier.issn0278-0046
dc.identifier.urihttp://hdl.handle.net/10985/6821
dc.description.abstractThis paper presents an original method, based on artificial neural networks, to reduce the torque ripple in a permanent-magnet non-sinusoidal synchronous motor. Solutions for calculating optimal currents are deduced from geometrical considerations and without a calculation step which is generally based on the Lagrange optimization. These optimal currents are obtained from two hyperplanes. The study takes into account the presence of harmonics in the back-EMF and the cogging torque. New control schemes are thus proposed to derive the optimal stator currents giving exactly the desired electromagnetic torque (or speed) and minimizing the ohmic losses. Either the torque or the speed control scheme, both integrate two neural blocks, one dedicated for optimal currents calculation and the other to ensure the generation of these currents via a voltage source inverter. Simulation and experimental results from a laboratory prototype are shown to confirm the validity of the proposed neural approach.
dc.description.sponsorshipCPER Région Alsace 2007-2013
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers
dc.rightsPost-print
dc.subjectPermanent Magnet Synchronous Motor
dc.subjectTorque Ripple
dc.subjectCogging Torque
dc.subjectHomopolar Current
dc.subjectNeuro-controller
dc.subjectAdaline
dc.titleA Self-Learning Solution for Torque Ripple Reduction for Non-Sinusoidal Permanent Magnet Motor Drives Based on Artificial Neural Networks
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Lille
dc.subject.halSciences de l'ingénieur: Energie électrique
ensam.audienceInternationale
ensam.page12
ensam.journalIEEE Transactions on Industrial Electronics
hal.identifierhal-00794383
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record