Show simple item record

dc.contributor.author
 hal.structure.identifier
MORVILLE, Simon
56624 Laboratoire d'Ingénierie des Matériaux de Bretagne [LIMATB]
dc.contributor.author
 hal.structure.identifier
CARIN, Muriel
56624 Laboratoire d'Ingénierie des Matériaux de Bretagne [LIMATB]
dc.contributor.author
 hal.structure.identifier
PEYRE, Patrice
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
GHARBI, Myriam
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.author
 hal.structure.identifier
CARRON, Denis
56624 Laboratoire d'Ingénierie des Matériaux de Bretagne [LIMATB]
dc.contributor.author
 hal.structure.identifier
LE MASSON, Philippe
56624 Laboratoire d'Ingénierie des Matériaux de Bretagne [LIMATB]
dc.contributor.author
 hal.structure.identifier
FABBRO, Rémy
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.date.accessioned2013
dc.date.available2013
dc.date.issued2012
dc.date.submitted2013
dc.identifier.issn1042-346X
dc.identifier.urihttp://hdl.handle.net/10985/6858
dc.descriptionversion post-print de l'article : JLA Vol : 24 Iss:3. 2D longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process
dc.description.abstractDerived from laser cladding, the Direct Laser Metal Deposition (DLMD) process is based upon a laser beam – powder – melt pool interaction, and enables the manufacturing of complex 3D shapes much faster than conventional processes. However, the surface finish remains critical, and DLMD parts usually necessitate post-machining steps. Within this context, the focus of our work is to improve the understanding of the phenomena responsible for deleterious surface finish by using numerical simulation. Mass, momentum, and energy conservation equations are solved using COMSOL Multiphysics® in a 2D transient model including filler material with surface tension and thermocapillary effects at the free surface. The dynamic shape of the molten zone is explicitly described by a moving mesh based on an Arbitrary Lagrangian Eulerian method (ALE). This model is used to analyze the influence of the process parameters, such as laser power, scanning speed, and powder feed rate, on the melt pool behavior. The simulations of a single layer and multilayer claddings are presented. The numerical results are compared with experimental data, in terms of layer height, melt pool length, and depth of penetration, obtained from high speed camera. The experiments are carried out on a widely-used aeronautical alloy (Ti-6Al-4V) using a Nd:YAG laser. The results show that the dilution ratio increases with increasing the laser power and the scanning velocity, or with decreasing the powder feed rate. The final surface finish is then improved.
dc.language.isoen_US
dc.publisherLaser Institute of America
dc.rightsPost-print
dc.title2D longitudinal modeling of heat transfer and fluid flow during multilayered
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des fluides
dc.subject.halSciences de l'ingénieur: Mécanique: Thermique
ensam.audienceNon spécifiée
ensam.page1-9
ensam.journalJournal of Laser Applications
ensam.volume24
ensam.issue3
hal.identifierhal-00799208
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record