Show simple item record

dc.contributor.authorMOREL, Anne
dc.contributor.authorBELLETT, Daniel
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorPESSARD, Etienne
dc.date.accessioned2013
dc.date.available2013
dc.date.issued2011
dc.date.submitted2013
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/6890
dc.description.abstractForged components are known to show high cyclic and monotonic mechanical properties. This is mainly due to a better compactness and a finer microstructure introduced by the forming process. However, this good mechanical behaviour is sometimes a source of anisotropy especially when the microstructural heterogeneities are not randomly distributed and/or oriented. This study aims at describing the high cycle fatigue response of a forged bainitic steel. This material contains a lot of elongated manganese sulphide (MnS) inclusions, oriented as a function of the rolling or forging direction. Specimens with different orientations relative to the rolling direction are tested in fatigue under push-pull uniaxial and torsion loads. The influence of “inclusion clusters” is clearly demonstrated via the observation of the failure surfaces. Experiments show that the anisotropic fatigue behaviour is due to a change in the crack initiation mechanism. At 0°, when the inclusions are parallel to the applied stress, micro-crack initiation is controlled by the material matrix. At 45° and 90°, elongated manganese-sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. A statistical approach based on the competition between two different crack initiation mechanisms is proposed. One mechanism is modelled by local elastic shakedown concepts and the other by linear elastic fracture mechanics. This approach leads to a Kitagawa type diagram and explains the anisotropy in the material. The approach developed in this study demonstrates a framework using both the elastic shakedown concept and the weakest link theory to account for the loading mode, loading path and data scatter in High Cycle Fatigue.
dc.language.isoen_US
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHigh cycle fatigue
dc.subjectAnisotropy
dc.subjectManganese Sulphide Inclusions
dc.subjectProbability
dc.titleModelling the role of non metallic inclusions on the anisotropic fatigue behaviour of forged steel
dc.identifier.doi10.1016/j.ijfatigue.2010.10.012
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page568-577
ensam.journalInternational Journal of Fatigue
ensam.volume33
ensam.issue4
hal.identifierhal-00805277
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record