Show simple item record

dc.contributor.authorFLACELIERE, Laurent
dc.contributor.authorDRAGON, André
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.date.accessioned2013
dc.date.available2013
dc.date.issued2007
dc.date.submitted2013
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/6915
dc.description Lien vers la version éditeur: http://www.sciencedirect.com/science/article/pii/S0142112306003240
dc.description.abstractThe aim of this paper is to present new modelling dedicated to multiaxial high cycle fatigue (HCF), and applied to polycrystalline metals. The model presented is based on the experimental characterization of damage during HCF tests, under pure tension and torsion modes. The origin of this approach is a mesoscopic model considering three plastic behaviour stages (hardening, saturation and softening) suggested by Papadopoulos [Papadopoulos I.V. Fatigue limit of metals under multiaxial stress conditions: the microscopic approach. Technical Note No. I.93.101, Commission of the European Communities, Joint Research Centre; 1993. [ISEI/IE 2495/93].], and used by Morel [Morel F. A critical plane approach for life prediction of high cycle fatigue under multiaxial variable loading. Int J Fatigue 2000;22:101–119.]. The principal evolution brought in by this study is a competition description during all the sample lifetime of the plasticity and damage effects. The plasticity mechanisms induce a hardening saturating effects (resulting from movement and accumulation of dislocations), especially significant at the beginning of the crystal life. Damage, present at the end of crystal lifetime, is considered as a degradation process inducing a strong reduction of the crystal ductility, leading to its failure (decohesion). The coexistence and the competition between these two effect (hardening and damage-induced softening) describe cyclic crystal behavior, including shakedown phase. The model is formulated in the framework of the continuum damage mechanics, according to the identified physical mechanisms during the tests. The second purpose is to compare the model predictions with experimental data, after identification of the parameter for a ferritic-pearlitic steel. The case of in-phase loading is merely studied here. In particular, the evolution of a few internal variables is discussed and correlated with the available physical features. It is shown that this model provides a complementary insight into a crystal with respect to the endurance criterion of Dang Van. The model predicts, in a particular stress amplitude range, the damage growth arrest.
dc.language.isoen_US
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHigh cycle fatigue
dc.subjectMultiaxial loading
dc.subjectContinuum damage mechanics
dc.subjectMesoscopic scale
dc.subjectLife prediction
dc.subjectMultiaxial fatigue
dc.subjectDamage model
dc.subjectMesoplasticity
dc.subjectExperiment
dc.titleCompetition between mesoplasticity and damage under HCF – Elasticity/damage shakedown concept
dc.identifier.doi10.1016/j.ijfatigue.2006.11.001
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page2281-2297
ensam.journalInternational Journal of Fatigue
ensam.volume29
ensam.issue12
hal.identifierhal-00809339
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record