Show simple item record

dc.contributor.authorBELLETT, Daniel
dc.contributor.author
 hal.structure.identifier
MOREL, Franck
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.author
 hal.structure.identifier
KOUTIRI, Imade
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorPESSARD, Etienne
dc.date.accessioned2013
dc.date.available2013
dc.date.issued2013
dc.date.submitted2013
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10985/7035
dc.descriptionLien vers la version éditeur: http://www.sciencedirect.com/science/article/pii/S0142112312002472
dc.description.abstractThis article is dedicated to the high cycle fatigue behaviour of cast hypo-eutectic Al–Si alloys and in particular the AlSi7Cu05Mg03 alloy. In a vast experimental campaign undertaken to investigate the fatigue damage mechanisms operating in this alloy, subject to complex loading conditions, it was shown that two different coexisting fatigue damage mechanisms occur in this materials, depending on the presence of different microstructural heterogeneities (i.e. micro-shrinkage pores, Si particles, Fe-rich intermetallic phases, DAS of the Al-matrix, etc.). In order to take into account both of these damage mechanisms, a probabilistic approach using the weakest link concept is introduced to model the competition between the two mechanisms. This approach leads naturally to a probabilistic Kitagawa type diagram, which explains the relationship between the fatigue behaviour of the material and the different casting processes or post-treatments (e.g. gravity casting and HIP). It is shown that the sensitivity to the different loading modes (i.e. uniaxial with and without mean stress, torsion and equibiaxial tension) depends on the microstructural heterogeneities responsible for crack initiation. For a porosity-free alloy, the predictions are very good for combined tension–torsion loading modes. When pores are present and control the fatigue strength, the predictions are very satisfactory for the uniaxial loads with different R-ratios and slightly conservative for multiaxial loads (i.e. torsion and equibiaxial tension). Never-the-less, they are much better than the predictions of the Dang Van criterion [1].
dc.language.isoen_US
dc.publisherElsevier
dc.rightsPost-print
dc.subjectHigh cycle fatigue
dc.subjectAlSi7Cu05Mg03-T7
dc.subjectMultiaxial loads
dc.subjectProbabilistic model
dc.subjectFatigue damage mechanisms
dc.titleA probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads
dc.identifier.doi10.1016/j.ijfatigue.2012.08.004
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page137-147
ensam.journalInternational Journal of Fatigue
ensam.volume47
hal.identifierhal-00821800
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record